Framework to generate hypergraphs with community structure


In recent years hypergraphs have emerged as a powerful tool to study systems with multi-body interactions which cannot be trivially reduced to pairs. While highly structured benchmark models have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows to specify general community structures and tune different local statistics. We illustrate how to use our model to sample synthetic data with desired features (assortative or disassortative communities, mixed or hard community assignments, etc.), benchmark community detection algorithms, and generate hypergraphs structurally similar to real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our work constitutes a substantial advancement in the statistical modeling of higher-order systems.

Physical Review E, 109, 034309
Nicolò Ruggeri
Nicolò Ruggeri
PhD student

My research interests include, but are not limited to, Probabilistic Learning and Network Science, as well as connected fields. In particular, I aim at understanding how current probabilistic models can be improved upon, both on a representation and training level. I am also fascinated by how different ideas and concepts from within and outside ML interpolate in interesting and novel developments. Therefore, I strive to keep a broader view on theoretical and practical insights originating from different fields.

Caterina De Bacco
Caterina De Bacco
CyberValley Research Group Leader

My research focuses on understanding, optimizing and predicting relations between the microscopic and macroscopic properties of complex large-scale interacting systems.