Reciprocity, community detection, and link prediction in dynamic networks

Abstract

Many complex systems change their structure over time, in these cases dynamic networks can provide a richer representation of such phenomena. As a consequence, many inference methods have been generalized to the dynamic case with the aim to model dynamic interactions. Particular interest has been devoted to extend the stochastic block model and its variant, to capture community structure as the network changes in time. While these models assume that edge formation depends only on the community memberships, recent work for static networks show the importance to include additional parameters capturing structural properties, as reciprocity for instance. Remarkably, these models are capable of generating more realistic network representations than those that only consider community membership. To this aim, we present a probabilistic generative model with hidden variables that integrates reciprocity and communities as structural information of networks that evolve in time. The model assumes a fundamental order in observing reciprocal data, that is an edge is observed, conditional on its reciprocated edge in the past. We deploy a Markovian approach to construct the network’s transition matrix between time steps and parameters’ inference is performed with an Expectation-Maximization algorithm that leads to high computational efficiency because it exploits the sparsity of the dataset. We test the performance of the model on synthetic dynamical networks, as well as on real networks of citations and email datasets. We show that our model captures the reciprocity of real networks better than standard models with only community structure, while performing well at link prediction tasks.

Publication
Submitted
Hadiseh Safdari
Hadiseh Safdari
Postdoctoral researcher

My current research revolves around inference and modeling in networks. More precisely, we aim to relax the independence assumptions in generative models by deploying hidden variables, and establishing analytical approximations to make the inference problem tractable.

Martina Contisciani
Martina Contisciani
PhD student

My research focuses on the analysis of network data using statistical tools. My background is in Theoretical and Applied Statistics and I am interested in discovering new techniques, approaches and perspectives used in the analysis of data. I have been working on a project focused on modeling covariate information in community detection algorithms and I am involved in investigating the conditional independence assumption, underlying the statistical inference on network data.

Caterina De Bacco
Caterina De Bacco
CyberValley Research Group Leader

My research focuses on understanding, optimizing and predicting relations between the microscopic and macroscopic properties of complex large-scale interacting systems.

Related