
A framework to generate hypergraphs with community structure

Nicolò Ruggeri,1, 2, ∗ Federico Battiston,3, † Caterina De Bacco1, ‡

1Max Planck Institute for Intelligent Systems, Cyber Valley, 72076 Tübingen, Germany
2Department of Computer Science, ETH, 8004 Zürich, Switzerland

3Department of Network and Data Science, Central European University, 1100 Vienna, Austria

In recent years hypergraphs have emerged as a powerful tool to study systems with multi-body
interactions which cannot be trivially reduced to pairs. While highly structured methods to gen-
erate synthetic data have proved fundamental for the standardized evaluation of algorithms and
the statistical study of real-world networked data, these are scarcely available in the context of
hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs
with many nodes and large hyperedges, which allows specifying general community structures and
tune different local statistics. We illustrate how to use our model to sample synthetic data with
desired features (assortative or disassortative communities, mixed or hard community assignments,
etc.), analyze community detection algorithms, and generate hypergraphs structurally similar to
real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our
work constitutes a substantial advancement in the statistical modeling of higher-order systems.

I. INTRODUCTION

Over the last decades, networks have emerged as a
fundamental tool to describe complex relational data in
nature, society and technology (1). Indeed, most real-
world systems are nowadays known to be characterized
by a highly non-trivial organization, which includes tri-
adic closure and high clustering (2), low diameter and an
efficient communication structure (3), and unequal de-
gree distributions (4). Noticeably, many systems reveal
the existence of modules or communities, where nodes
are naturally clustered in different groups based on their
patterns of connections (5). Identifying communities is
an important task that allows performing various down-
stream analysis on networks, describing the roles of nodes
and, generally, providing a low dimensional representa-
tion of possibly large systems. Since the seminal papers
by Newman et al. (6) and Lanchichenetti et al. (7), the
problem of generating synthetic data for highly struc-
tured graphs with prescribed features has attracted enor-
mous interest in the community. On the one hand, these
models have led to tremendous improvements in eval-
uating which community detection algorithms perform
best at a given task (8). On the other hand, they have
allowed the reliable generation of large synthetic data
samples, useful to analyze non-trivial statistics from sin-
gle instances of real networks and systematically inves-
tigate the impact of mesoscale structure on dynamical
processes on graphs (9, 10). This methodology has been
applied to different domains, including studies on polar-
ization on social media (11), percolation thresholds in
brain networks (12), and structural and covariate infor-
mation (13, 14).

Despite their success, recent evidence suggests that
graphs can only provide a limited description of real-

∗ nicolo.ruggeri@tuebingen.mpg.de
† battistonf@ceu.edu
‡ caterina.debacco@tuebingen.mpg.de

ity, as links are inherently limited to describe pairwise
interactions (15–18). By contrast, non-dyadic higher-
order interactions have been observed across different
domains, including the human brain (19–21), collabo-
ration networks (22), species interactions (23), cellular
networks (24), drug recombination (25), and face-to-
face human (26) and animal (27) interactions. Inter-
estingly, such higher-order interactions naturally lead to
the emergence of new collective phenomena in synchro-
nization (28–32) and contagion (33–35) dynamics, diffu-
sive process (36, 37) and evolutionary games (38, 39).
Hypergraphs (40), where hyperedges encode interactions
among an arbitrary number of system units, are a nat-
ural framework to describe relational data beyond the
pair (15). In the last few years many tools have been
developed to characterize the higher-order organization
of real-world hypergraphs, including new centrality mea-
sures (41, 42), higher-order clustering (43) and motif
analysis (44), hypergraph backboning (45), hyperedge
prediction (46), methods to infer higher-order interac-
tions from low-order data (47). In particular, several
tools to extract higher-order communities have been pro-
posed, either based on flow distribution (48, 49) or sta-
tistical inference frameworks (46, 50).

Nevertheless, how to generate structured hypergraphs
is still an open problem. The few currently available
models mainly focus on “unstructured” higher-order gen-
eralizations of the configuration (51–53) and the Erdos-
Renyi model (54), or on growth models for hyper-
graphs (55–57). A different perspective is that of rela-
tional hyperevent models (58), which specify event rates
based on hyperedge statistics for hyperedges to exist,
similarly to what exponential random graphs do for net-
works (59, 60). All these approaches, however, do not
account for community structure, hence are of limited us-
age when it comes to reproducing the complex mesoscale
organization of real-world higher-order systems. Recent
works introduced latent variables models to infer commu-
nity structure in hypergraphs (46, 50, 61), however they
do not explain how to sample from the generative model.

ar
X

iv
:2

21
2.

08
59

3v
2

 [
cs

.S
I]

 2
2

Ju
n

20
23

mailto:nicolo.ruggeri@tuebingen.mpg.de
mailto:battistonf@ceu.edu
mailto:caterina.debacco@tuebingen.mpg.de

2

FIG. 1: Sampling hypergraphs with community
structure. A pictorial representation of two small hy-
pergraphs with N = 10 nodes, K = 2 communities,
and (A) hard or (B) overlapping membership assignment.
Every node’s membership assignment ui = (ui1, ui2) is
represented as a pie chart. Single colored nodes have hard
assignments, mixed charts represent overlapping assign-
ments. Due to the likelihood in Eq. (2), nodes with over-
lapping assignments are more likely to belong to between-
community interactions.

Indeed, while sampling and inference are often studied
jointly in standard networks, these two tasks present dis-
tinct computational and theoretical challenges in the case
of hypergraphs.

In this work, we provide a principled and general
framework to sample hypergraphs. In particular, our
method allows flexible sampling of higher-order networks
with prescribed microscale and mesoscale features, con-
trolling the distribution of node degrees and hyperedge
sizes, as well as specifying arbitrary community struc-
ture (e.g. hard vs overlapping membership, assortative
vs disassortative, etc.). The method is highly efficient,
and scales well with the number of nodes, hyperedges, as
well as hyperedge size, making it suitable for the analysis
of real-world systems. In the following, we first introduce
our generative model and sampling strategy. Then, we
extensively characterize the hypergraphs obtained by in-
vestigating the phase space associated with the different
structural parameters. Finally, we show how to utilize
our method to analyze the structural and statistical prop-
erties of real-world data.

II. GENERATIVE MODEL

We consider hypergraphs H(V,E) consisting of N
nodes V = {1, . . . , N} and a hyperedge set E, where

each hyperedge e ∈ E describes an interaction among an
arbitrary set of unique nodes, i.e. e ⊆ V , and |e| is the
hyperedge size. The degree of a node i, i.e. the number of
hyperedges it belongs to, is denoted as di. Similarly, we
define the degree sequence d = {d1, . . . , dN} as the vector
of node degrees and the size sequence k = {k1, . . . , kD}
as the count of hyperedges per hyperedge size (53). We
consider hyperedges of arbitrary sizes, up to a maximum
of D ≤ N , and denote the space of all possible such
hyperedges with Ω. We assume positive and discrete hy-
peredge weights, encoded using a vector A ∈ N|Ω|, so
that E = {e ∈ Ω : Ae > 0}.

Our sampling approach introduces a flexible way to
generate highly structured weighted hypergraphs with
mesoscale structure, where hyperedges are generated
probabilistically and nodes belong to K communities.
Specifically, each node i ∈ V is assigned a K-dimensional
membership vector ui, where we allow uik ≥ 0 for the
general case of soft membership, where nodes can belong
to multiple communities. The particular case of hard
membership assignment, where a node can only belong
to one community, is recovered by setting only one non-
zero entry for ui. In Fig. 1 we illustrate these two cases
by showing two small hypergraphs with hard or overlap-
ping community structure. The non-negative symmetric
K×K-dimensional affinity matrix w regulates the inter-
actions between communities. Classic patterns are assor-
tative affinity matrices, with dominant diagonal signaling
stronger inter-community interactions, and disassortative
ones, where the out-diagonal terms have higher magni-
tude. For any given hypergraph, we define the following
likelihood function:

p(H;w, u) =
∏
e∈Ω

p(Ae;u,w)

=
∏
e∈Ω

Pois

(
Ae;

λe

κ|e|

)
, (1)

where

λe :=
∑

i<j∈e

uT
i w uj =

∑
i<j∈e

K∑
k,q=1

uikwkqujq. (2)

This parameterization allows generating hypergraphs un-
der different scenarios, e.g. with assortative or disas-
sortative community structures, and is reminiscent of
those used in probabilistic models for pairwise networks
(62, 63) and in variants of non-negative tensor factoriza-
tion as used in the machine learning community (64, 65)
when D = 2. In addition, restricting our model to D = 2
and κ2 = 1 recovers the canonical Poisson stochastic
block model (66). The parameter κ|e| is a normaliza-
tion factor and is a function of the size |e| of the hy-
peredge e only (i.e. it only depends on the size of the
interaction, and not on the nodes involved in it). These
constants regulate the expected statistics of the model,
such as expected degree and hyperedge size distribution.

3

In general, any choice of κd > 0 yields a well-defined
probabilistic model. We illustrate sensible values for κd

in Appendix A 2.
Alternative generative models for hypergraphs have

been recently proposed. In particular, the works of
Chodrow et al. (50) and Contisciani et al. (46) can be
more closely compared to the model in Eq. (1), since they
are both based on factorized Poisson likelihoods based on
communities. The former work assumes sufficient statis-
tics only evaluated on hard community assignments and
we are not aware of any computationally efficient sam-
pling procedure from the relative generative process. The
model of Contisciani et al. (46), instead, bears closer re-
semblance to the one proposed in this paper. The main
difference lies in the specific form of the Poisson means,
which, for every hyperedge e, are based on a product of |e|
terms, as opposed to the bilinear form in Eq. (1). Despite
the similar generative process, the tools utilized in this
work cannot be straightforwardly applied to that model,
as closed-form statistics and approximate Central Limit
Theorem results cannot be derived in the same manner.
More generally, the primary goal of the aforementioned
models is to infer hypergraph structure, leaving the prob-
lem of sampling unsolved. While our model is also well
suited to efficiently infer hypergraph structure, as we il-
lustrate in Ruggeri et al. (67), the primary objective of
this work is to demonstrate how we can effectively sample
from its probability distribution. This key model’s capa-
bility makes it possible to generate highly structured syn-
thetic data with higher-order interactions. This is a key
advancement for practitioners handling hypergraph data
and follows influential work on such a topic for pairwise
networks (6, 7).

III. SAMPLING HYPERGRAPHS

We now propose an efficient way to sample hyper-
graphs from the generative model defined in Eq. (1).
Such a task is far from being straightforward. To see
why, let us consider a pairwise network model, where the
configuration space is of size |Ω| = N2, and compare it
with our higher-order problem. In the former case, gen-
eration is feasible by simply exploring every single edge
separately and sampling from the relative Poisson dis-
tribution. In the latter case, however, the rapid growth
of the Ω space renders both naive sampling techniques
and Monte Carlo algorithms inapplicable. Here, we pro-
pose a solution to this challenge using approximate sam-
pling. In the following, we focus on the intuition behind
our method and illustrate relevant usage example. For a
more technical description we defer to Appendix B.

A. Sampling algorithm

Our sampling procedure follows three consecutive
steps:

a. Sampling node degrees and hyperedge sizes. The
first sampling step consists of approximately sampling
the d and k vectors for a given choice of community mem-
berships u and affinity matrix w. Then, we use these two
quantities to draw a first proposal of a binary hypergraph
defined by the array Ab ∈ {0, 1}|Ω|. More in detail, we
first approximate p(d, k;u,w) ≈ p(d;u,w) p(k;u,w) and
then use the Central Limit Theorem (CLT) to sample
from p(d;w, u) and p(k;w, u) separately. We note that
these are the only approximations needed in the whole
sampling routine. We elaborate more on their validity in
Appendix E. After sampling the d, k sequences, we com-
bine them into a first binary hypergraph configuration
(i.e. a list of hyperedges) to be passed in input to the
next sampling step. Intuitively, we incrementally build a
hyperedge list until exhaustion of both sequences, start-
ing by first taking the nodes with highest degrees. If the
two sequences are not compatible, i.e. it does not exist a
hypergraph that satisfies both, one can choose which of
the two sequences to preserve during the hyperedge list
construction. Such sequence will be exactly replicated,
while the other will be modified to construct the first list
proposal. Notice that the recombination problem has
connections with the Havel-Hakimi algorithm (68) and
the Erdös-Gallai Theorem (69). Hence, the algorithm we
propose for this task is a technical novelty of independent
interest. We explain the algorithm in detail and present
a pseudocode for it in Appendix E.

b. Sampling hyperedges. In this second step, we
sample the binary hyperedges Ab

e, conditioned on d and
k, using a Markov Chain Monte Carlo (MCMC) rou-
tine. This works by continuously mixing the hyperedges
starting from the initial proposal Ab obtained at step
a. The main tool utilized here is the reshuffling oper-
ator introduced in Chodrow et al. (53): given two hy-
peredges e1, e2, reshuffle the nodes not belonging to the
intersection e1 ∩ e2 to obtain two new hyperedges e′1, e

′
2.

Then, accept or reject the new proposal according to the
Metropolis-Hastings algorithm (70), whose acceptance
rates depend on the Poisson means λe1/κe1 , λe2/κe2 and
consequently on the u,w parameters. Due to the proper-
ties of the reshuffling operator the new hyperedges e′1, e

′
2

have same sizes as e1, e2, hence the sequences d and k are
preserved. Intuitively, the Markov chain achieves good
mixing owing to conditioning on (d, k), which restricts
the space of the possible configurations.

c. Sampling hyperedge weights. In the third and fi-
nal step, we sample the weights Ae from p

(
Ae|Ab

e = 1
)
.

This conditional distribution is a zero-truncated Poisson
with mean λe/κ|e|. A related efficient sampling proce-
dure based on inverse transform sampling is proposed
in Appendix B 3.

Altogether, the three sampling steps described above
correspond to the following probabilistic decomposition:

p (A;u,w) = p
(
A|Ab;u,w

)
p
(
Ab|d, k;u,w

)
p (d, k;u,w) .

(3)

We provide the pseudocode of the sampling procedure

4

in Algorithm 1 and provide an open-source implementa-
tion at github.com/nickruggeri/Hy-MMSBM.

Algorithm 1: Sampling algorithm.
a: Lines 1-3; b: Lines 4-10; c: Line 11.

Input: Number of communities K, memberships
u, affinity w, MCMC burn-in steps nb and
intermediate steps ni, number of samples
S.

Result:
{
A(s)

}
s=1,...,S

1 Sample binary degree sequence d ∼ p (d;u,w)
2 Sample size sequence k ∼ p (k;u,w)

3 Create first proposal Ab from d, k
4 for i = 1, . . . , nb do
5 Ab ← reshuffle(Ab), accept according to

Metropolis-Hastings, depending on (u,w)
6 end
7 for s = 1, . . . , S do
8 for i = 1, . . . , ni do
9 Ab ← reshuffle(Ab), accept according to

Metropolis-Hastings, depending on (u,w)
10 end

11 sample A(s) ∼ p
(
A|Ab;u,w

)
12 yield A(s)

13 end

B. Additional user input

The sampling procedure described above only requires
the community assignments u and affinity matrix w as
generative parameters. However, a practitioner may de-
sire to generate hypergraphs with specific features, such
as a given degree or hyperedge size sequence. Our model
allows doing so naturally, either by providing such statis-
tics as additional input or by tuning the generative pa-
rameters prior to sampling. More precisely, one can skip
the initial step and simply fix d or k (or both) as input
instead of sampling them. As explained in Section IIIA,
these quantities are guaranteed to be preserved in the
sampled hypergraphs. Algorithmically, this corresponds
to starting directly from line Line 3 in Algorithm 1.

In some cases, one might be interested in replicating
the ddata, kdata sequences observed in a real hypergraph
dataset. In such a simplified scenario, one can condition
on the (binarized) hyperedges of the data, and proceed
by directly mixing them via the MCMC procedure in the
second sampling step. Since the hyperedges define the
degree and size sequences, these will be preserved and
identical to those of the real data, while the samples will
come from the model’s probability distribution. As per
Eq. (3), the MCMC procedure will yield samples from
p(Ab|ddata, kdata;u,w). Notice that, in general, condi-
tioning on any given sequence d or k might yield sam-
ples A outside the high-density areas of the distribution.
This is a desirable feature, as it allows the user to further
specify constraints and sample hypergraphs that would
otherwise be far from the typical samples obtained with-

out conditioning (71).
Finally, with our model we can obtain closed-form ex-
pressions for relevant hypergraph properties in terms of
u and w, e.g. the expected degree of nodes, as shown
in Appendix A 1. This means that, by tuning the u,w
parameters, such properties can be specified prior to sam-
pling. We illustrate some examples of this procedure in
Section IV.

IV. SYNTHETIC DATA

In this section, we illustrate how the generative pa-
rameters u and w can be tuned to sample hypergraphs
with desired structures at a micro (node and hyperedge)
and mesoscale (community structure and hypergraph-
level statistics) level. We release ready-to-use examples
of these synthetic datasets along with the open-source
implementation.

A. Community assignment

We begin by showing how varying the overlap in the
membership assignments u leads to different intra and
inter-commmunity structure. In Fig. 2 we tune the as-
signments from hard (ui has only one non-zero entry),
to soft (ui > 0 for multiple entries), and highlight the
strength of the interactions between and within com-
munities by varying the thickness of edges and circles.
As memberships vary from hard to soft (left to right),
edges become thicker and circles smaller, as inter(intra)-
community interactions increase (decrease). Quantita-

tively, we compute the entropy −∑K
k=1 rk log rk, where

rk is the ratio of nodes belonging to community k. In
mixed-membership settings, one can extract a proxy
for a hard assignment for node i by selecting the k =
argmaxk uik; we use this to compute rk. Lower en-
tropy denotes hyperedges whose nodes mostly belong to
the same communities, higher values denote hyperedges
with nodes distributed across different communities. In
Fig. 2B we show how the entropy of the community dis-
tribution grows as we sample from increasingly overlap-
ping models. We also study the partition in communities
of nodes belonging to hyperedges of different sizes. For
each hyperedge we compute the ratio of nodes that be-
long to the majority class. For example, in a hyperedge
of size 5 with two nodes in class 1 and three in class 2,
the majority class is 2, yielding a majority class ratio of
3/5. Fig. 2C shows how this ratio decreases going from
hard to soft memberships, illustrating the heterogeneity
of the nodes’ communities across hyperedges of different
sizes.

B. Affinity matrix and heterogenous

http://github.com/nickruggeri/Hy-MMSBM

5

FIG. 2: Sampling hypergraphs with hard and soft community assignment. (A) We sample hypergraphs
from a model with K = 5 equally-sized communities, an assortative affinity matrix w, and different node community
memberships u (from hard to soft). The five shaded yellow circles represent different communities, the thicknesses of
the edges and circles are proportional to the interaction strength between and within communities. (B) The entropy of
community memberships grows as increasingly overlapping configurations are considered. (C) We show the maximum
assignment ratio (the relative number of nodes belonging to the majority class for each hyperedge) across hyperedge
sizes. Orange circles are proportional to the amount of hyperedges with a given maximum assignment ratio.

community size

While varying u acts on the propensity of individual
nodes to participate in groups, the affinity matrix w con-
trols the density of interactions within and between com-
munities. The generative model in Eq. (1) is well-defined
for any non-negative symmetric affinity matrix w, allow-
ing simulating various structures by properly tuning its
entries. To illustrate the generation of hypergraphs with
different affinity matrices, here we consider a range of
matrices that start from diagonal (assortative) to gradu-
ally move to the uniform matrix of ones (disassortative),
and rescale them to obtain an expected degree of five.
For simplicity we set the assignments u to hard member-
ship. The method is well suited to sample not only ho-
mogenous hypergraphs, but also higher-order networks
with heterogenous distribution of the community size.
Here we consider five communities with different sizes.
As shown in Fig. 3A, moving from an assortative to a
disassortative configuration, the inter-community inter-
actions strengthen substantially. Further, notice that the
strengths of the interactions are influenced by the hetero-
geneity of the community size, as larger communities are
expected to participate in more interactions.

It is also possible to tune individual entries of the affin-

ity matrix w. In particular, in Fig. 3B we perform an
experiment where we start from a diagonal matrix, and
gradually increase only the w12 (and w21) entries, using
three equally-sized communities. In this way, only the
expected interactions between communities 1 and 2 are
affected, while interactions among other communities are
left unchanged.

C. Analzying community detection

One of the most useful applications of generating syn-
thetic data with a desired underlying structure is the
possibility to evaluate how competing algorithms per-
form on a given task that depends on the structure un-
der control. In fact, when synthetic data with a known
structure is available, it is possible to quantitatively com-
pare the outcome of various algorithms and measure their
ability to recover ground truth information. In network
science, a classical and much investigated problem is as-
sessing the ability of community detection algorithms to
extract meaningful partitions of the network (7). For
higher-order networks, the current lack of sampling meth-
ods for synthetic data with flexible community structure
has led to a variety of custom-built examples, which

6

FIG. 3: Sampling hypergraphs with assortative and disassortative affinity and heterogeneous community
size. (A) We sample hypergraphs with five communities of different sizes and hard membership assignments. We vary
the affinity matrix w from assortative (left, diagonal) to disassortative (right, uniform matrix filled with ones). Shaded
yellow circles represent the communities, the thicknesses of the edges and circles are proportional to the interaction
strength between and within communities. (B) We vary the affinity w from diagonal (left) and increase its entries
w12, w21 (right) for K = 3 equally-sized communities. Nodes represent communities and the thickness of the edges
and circles is proportional to the strength of the interactions between and within communities.

2 4 6 8 10 12 14
Max Hyperedge Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

S
im

ila
ri

ty

Hy-MMSBM

Spectral
Clustering

Hypergraph-MT

Hypergraph
AON-MLL

FIG. 4: Evaluating higher-order community de-
tection algorithms. We sample hypergraphs to test
the ability of different higher-order community detec-
tion algorithms to recover well-defined planted partitions.
We consider hypergraphs with N = 500 nodes, K = 3
equally sized assortative communities and hard assign-
ments. We plot the cosine similarity between the in-
ferred partitions and the ground truth as a function of
the maximum hyperedge size. Additional details on the
data generation are given in Appendix F.

renders comparison difficult and subject to individual
choices (46, 50, 72).

In this section, we show how our synthetic data can be
utilized to analyze the behavior of some of the current al-
gorithms for higher-order community detection. To this
end, we generate hypergraphs with assortative structure
and hard community assignments, and perform inference
with a variety of methods, namely Hy-MMSBM (67),
Hypergraph-MT (46), spectral clustering (73) and hyper-
graph modularity (50). In Fig. 4, we show the cosine sim-
ilarity of the inferred communities with the ground truth
as a function of the maximum hyperedge size. As can
be observed, Hy-MMSBM attains the best performance
when group interactions beyond a critical size are intro-

duced, successfully recovering the ground truth assign-
ments. Hy-MMSBM is a flexible inference tool whose in-
ference procedure is based on the same generative model
described in Eq. (1), and generally able to extract mixed-
membership assignments for arbitrary (e.g. assortative or
disassortative) community structure. Other algorithms
attain varying scores, which might be explained by the
different assumptions of the underlying models. For ex-
ample, Hypergraph-MT is designed to extract overlap-
ping communities, while spectral clustering can only be
utilized for the detection of hard assignments. As such,
the latter can be expected to perform well only in scenar-
ios where interactions are dictated by hard communities,
while the former can be employed when nodes may be-
long to more than one module.

Procedures like the one presented in this section can
be used to understand the limitations and strengths of
different algorithms, allowing researchers to effectively
test new proposals in different scenarios by varying the
properties of the samples generated with our method, e.g.
the degree of assortativity.

D. Computational cost

Our sampling method is highly efficient and computa-
tionally scalable. We analyze the cost of our sampling
strategy by discussing the cost of the individual sam-
pling steps. The first step, consisting of sampling the
degree and size sequences, can be cheaply performed in
O(N) time. In fact, to sample the d, k sequences we need
to compute the mean and standard deviations defined
in the Central Limit Theorem, and thus draw the se-
quences from the relative Gaussian distributions. These
operations have linear cost, see Appendix B 1. In the
second step we first combine the sampled d, k sequences
into a first hyperedge configuration, and successively mix
the hyperedges via MCMC. Generally, while the num-
ber of Markov chain steps needed for mixing is a func-
tion of N and |E| (74), it is difficult to specify a pre-
defined number. In Fig. 5, we fix nb = 100000 burn-in

7

steps and ni = 20000 intermediate steps between sam-
ples, which is a default value we utilized in most experi-
ments. Nonetheless, the main cost we observe in this case
is that prior to MCMC, i.e. the producing the first hy-
peredge configuration from the sequences. Empirically,
such step dominates the computational cost. Finally, the
third step consists of sampling the non-zero weights ac-
cording to p(A|Ab;u,w). The cost of this operation is
proportional to the number of hyperedges |E|; for sparse
hypergraphs—and as often observed in real data—this is
comparable to N .
Empirically, we find the CLT approximations to be

working well. Nevertheless, one could further improve
on the quality of sampling by drawing the pairwise edges
from their exact Poisson distribution (Eqs. (1) and (2)),
with cost O(N2), and resorting to approximations only
for interactions of order three or greater. This is of par-
ticular help when sampling denser hypergraphs: since
the MCMC does not necessarily guarantee non-repeated
hyperedges, sampling directly the order-two interactions
reduces the probability of repeated edges. For higher-
order interactions, the probability of repetitions is negli-
gible, in particular in sparse regimes (53). Indeed, in all
the experiments presented in this paper we sample the
order-two interactions directly, and resort to the CLT
approximations for hyperedges of order at least three.

In Fig. 5 we investigate the efficiency of both exact and
solely CLT-based sampling and observe the difference to
be negligible. As discussed above, this is a consequence
of the higher computational effort required in other sam-
pling steps. Altogether, our model is highly efficient, as
it allows sampling sparse hypergraphs of dimensions up
to 105 nodes in less than one hour.

V. REAL DATA

A. Modeling real-world systems

In this section we aim at sampling hypergraphs that
mimic the community structure of a given dataset. To
this end, we proceed as follows. First, we infer the affin-
ity matrix w and community assignments u using the
Hypergraph-MT algorithm (46) on the real data. Since
this algorithm returns a (diagonal) matrix wd for ev-
ery possible hyperedge size d, we take their element-
wise geometrical mean to construct the matrix w utilized
in Eq. (2). Notice that a similar approach could have
been taken utilizing the Hy-MMSBM algorithm, which
employs the same probabilistic model of our sampling
method, as explained in Section IVC. To highlight the
flexibility of our methodology, which can be applied along
with any community detection methodology, here we uti-
lize Hypergraph-MT. In fact, our method accepts input
parameter w and u regardless how these are obtained; in
particular, these can be obtained by using different in-
ference methods applied to the input data. Our method
is capable of generating synthetic data conditioning on

0 2 4 6 8 10

N ×104

0

5

10

15

20

25

30

T
im

e
(s

)

×102

Exact

Approximate

FIG. 5: Computational complexity and scalability.
We plot the computational cost of our sampling model
for sparse hypergraphs as a function of the system size
N . Our model is highly efficient, as it allows sampling of
sparse hypergraphs of dimensions up to N = 105 nodes in
less than one hour. We show results for hypergraphs with
fixed expected degree equal to 5, both for an exact (solid
line) and an approximate approach (dashed line) based
on central limit theorem sampling of dyadic interactions.
Here, we utilize K = 5 communities and unconstrained
maximum hyperedge size D = N .

the desired input communities and affinity matrix. As
such, it can be used in a complementary way together
with community-based method focusing solely on infer-
ence. Second, we condition the degree and size sequences
by providing in input the observed hyperedge configura-
tion, i.e. the hyperedges present in the real data. As
explained in Section III B, this means skipping the first
step of our sampling procedure and moving directly to
perform MCMC starting from such configuration. The
returned hypergraphs will have a structure similar to that
of the data, but will be sampled according to the gener-
ative model in Section II.

B. Comparing data and sample statistics

We now apply the proposed methodology on a va-
riety of real datasets. As a representative example,
we consider a dataset of co-sponsoring of bills for the
U.S. House of Representatives (75, 76). Nodes corre-
spond to congresspersons, and hyperedges connect sub-
sets of them that co-sponsor a bill. The dataset contains
N = 1494 nodes, |E| = 54933 hyperedges with maxi-
mum size D = 399, and has been previously analysed via
higher-order stochastic block models (46, 50).
As a first sanity check, in Supp.Mat. Fig. 8 we verify

that the degree and size sequences measured on the sam-
ples are identical to those of the data. This is guaranteed
by the properties of the reshuffling operator described in
Section III. We then proceed by comparing additional rel-
evant statistics as measured on the real data and on the
samples. Such statistics serve as a test for the goodness of

8

FIG. 6: Matching statistics of real-world data and samples: the case of the House Bills dataset We
plot (A) the adjacency matrices, (B) the hyperedge inclusions occurences, (C) the hyperedge eigenvector centrality
distribution and (D) the sub-hypergraph centrality distribution for the House Bills dataset, where nodes represent
congresspersons, and hyperedges describe subsets of them that co-sponsor a bill. For all such cases, we observe a
good correspondence between the statistics measured on the real data and those obtained from a single sample of our
generative model.

fit, as they should match if the dataset is well-represented
by the model.

We start by performing a visual comparison of the ad-
jacency matrices (15, 77), where the adjacency value Xij

of any two nodes i, j is defined as Xij :=
∑

e∈E:i,j∈e Ae .
As shown in Fig. 6A, our samples are well aligned with
the real data.

Another relevant structural property of a hypergraph
is the inclusion relationships between hyperedges, i.e.
which hyperedges are subsets of others (44). This is of
particular interest when comparing a hypergraph with
its clique expansion, i.e. the graph obtained by project-
ing hyperedges onto pairwise interactions, or when com-
paring with other higher-order representations such as
simplicial complexes (78, 79). In Fig. 6B, we count the
number of hyperedges of size n that are included in hy-
peredges of size n + 1. Also in this case, results on our
sample match well those measured on the input dataset.

Finally, we explore two centrality measures on hyper-
graphs. As a first example, in Fig. 6C we consider a
generalization of eigenvector centrality (80) for hyper-
edges. In particular, we consider the dual representation
of the hypergraph, where nodes represent interactions in

the original hypergraph and are connected if they have
a non-empty intersection (81). Moreover, in Fig. 6D we
also compute sub-hypergraph centrality (77, 82), which
returns a measure of node importance in hypergraphs.
Also in such cases, the quantities measured on our sam-
ples behave similarly to those based on the input data.

We highlight that the resemblance between samples
and real data is not simply due to the Markov Chain be-
ing stuck in a local optimum given by the initial configu-
ration, i.e. the real dataset. To prove this, we further
investigate the Markov Chain mixing while producing
the samples based on the House-Bills dataset. We ob-
serve that 73% of the shuffling steps are accepted by the
Metropolis-Hastings algorithm, signalling good mixing.
As an additional structural confirmation, we measure the
Jaccard similarity between the real data and 10 samples,
defined as the number of hyperedges in the intersection
divided by the number of hyperedges in the union. Also
in this case, the resulting score of 0.69±0.11 signals that
the microscopic structure of the samples detaches from
that of the real data, while the macroscopic statistics in
Fig. 6 are preserved. Finally, we also observe that less
structured methods fail to replicate such statistics. In

9

FIG. 7: Hypergraph sample statistics, null hypothesis and generative assumptions. To illustrate the wide
applicability of our model, we compare several statistics on real and sampled data. We plot (A) the adjacency matrix
of face-to-face higher-order interactions among students in a High School dataset, (B) the eigenvector centrality
distribution of co-purchasing behavior at Walmart, (C) the sub-hypergraph centrality distribution from committees
data in the U.S. House. Similarly to the results presented in Fig. 6, our model correctly reproduces the desired
statistics. In (D) we show the adjacency matrix associated with co-voting Justices of the U.S Supreme Court.
Such data have a strong temporal structure which is not included in the generative assumption of the model, hence
explaining the limited correspondence between real and synthetic statistics.

Appendix H we obtain samples utilizing the configura-
tion model from Chodrow (53), which only takes into
account the degree and size sequences. In this case, we
observe a significant difference between the samples and
the data, which could be explained by the lack of addi-
tional probabilistic structure in the sampling procedure.

To illustrate the wide applicability of our method, we
extend this analysis to additional systems. In Fig. 7A
we report the observed adjacency matrix of face-to-face
interactions among High School students (83), and the
one obtained from a sample of our generative model.
In Fig. 7B we show the distribution of the hyperedge
eigenvector centrality computed on co-purchasing cus-
tomer Walmart data (84). Finally, in Fig. 7C we compare
the sub-hypergraph centrality on the House Committees
dataset (50, 85), where hyperedges connect the members
of the U.S. House participating in the same committees.
In all such cases, we observe that our sampling method
successfully models the desired statistics of the real data.

Synthetic data generated to incorporate a particular
structure are often utilized as tests for null hypotheses.
Indeed, discrepancies between sampled and real data may

arise if some data features are not explicitly taken into
account by the generative assumptions of the model (86).
Observing such differences can help unveil some relevant
additional structure present in the data and originally
neglected. As an example, we consider a dataset of co-
voting patterns of the US Supreme Court Justices, where
the nodes are Justices and hyperedges describe co-voting
behaviors observed from 1946 to 2019 (87). Since the
number of Justices is fixed to 9 at any point in time,
only interactions between Justices working in overlapping
years can exist. Such an intrinsic time dependency, how-
ever, is not enforced by our model. Hence, we do not ex-
pect samples of our model to match the input adjacency
matrix well. We illustrate this in Fig. 7D, where the com-
parison of the sampled and observed adjacency matrices
are distinctively different, with the real data showing a
clear time-dependence. Our example illustrates the im-
portance of correctly identifying the existence of particu-
lar structures in real-world dataset, showcasing how our
sampling method could be used for testing null hypothe-
ses and reproducing real-world statistics.

10

DISCUSSION

In this paper, we presented a framework for the genera-
tion of synthetic hypergraphs with flexible structure. Our
model allows specifying different assortative and disas-
sortative mesoscale configurations, tuning the size of the
different communities and controlling the strengths of the
interactions among them. Moreover, it allows regulating
different node-level statistics, including hard or mixed
community assignments and expected degrees. Through
a variety of experiments, we showed how desired charac-
teristics specified via input parameters are reflected in the
generated data. Furthermore, we illustrated how practi-
tioners can use our framework on real systems, both as
a computationally efficient sampling tool for the repli-
cation of statistical measures, and as a structured null
model for hypothesis testing. As an example, our model
generates synthetic samples that successfully replicate
centrality measures and inclusions relationship between
hyperedges in higher-order data from different domains.
Similarly, our model can help reveal important missing
features in the generative assumptions made by different
algorithms, showing clear discrepancies between samples
and real data when, for instance, time-dependence is ig-
nored. Finally, our framework allows testing the per-
formance of different higher-order community detection
methods.

There are various interesting and relevant avenues for
future work. A first one is moving from the likelihood in
Eq. (1), which is based on a bilinear form, to one based on
a multilinear form. While in principle this would allow
for more flexible specifications, such as preventing the
formation of certain hyperedge configurations, it is cur-
rently unclear how to obtain efficient expressions for the
expected statistics and compute the moments required in
the Central Limit Theorem. Moreover, additional infor-
mation, such as time dependency and attributes on the
nodes and hyperedges, could be explicitly incorporated
in the probabilistic model. Such an extension could be
based on insights from models for dyadic interactions,
and result in substantial improvements when this infor-
mation correlates with the hypergraph structure (88–91).

Taken together, our methodology provides a prin-
cipled, scalable and flexible framework to sam-
ple structured hypergraphs. To facilitate its us-
age we provide an open-source implementation at
github.com/nickruggeri/Hy-MMSBM. The method is
also implemented as part of the HGX library (92).

ACKNOWLEDGEMENTS

We thank Martina Contisciani for the extensive dis-
cussions and useful feedback. N.R. acknowledges support
from the Max Planck ETH Center for Learning Systems.
F.B. acknowledges support from the Air Force Office of
Scientific Research under award number FA8655-22-1-
7025.

Appendix A: The probabilistic model

We introduce some additional notation to that utilized
in Section II. Recall that the hyperedges are independent
realizations with distribution

p(Ae;w, u) = Pois

(
Ae;

λe

κ|e|

)
∀e ∈ Ω ,

where we define

λe :=
∑

i<j∈e

uT
i wuj . (A1)

To avoid clutter, we overload the notation and define, for
any hyperedge e, κe := κ|e|.
Furthermore, recall that Ω is the space of all possible
hyperedges of sizes from 2 to D. We also define, for any
hyperedge size d, the space of hyperedges of fixed size Ωd.
The function δ is the indicator function, taking value 1
if its argument is true, 0 otherwise.

1. Expected statistics

Our model allows to obtain closed-form expressions for
the expectations of various relevant statistics. In the fol-
lowing, we assume that u,w are fixed, show how to derive
some of these statistics and compute them in cheap linear
time O(N). As explained in Section III B, having these
statistics available is useful to aid the tuning of u,w prior
to sampling. We discuss the choice of the functional form
of κ in Appendix A 2.

a. Expected weighted degree of a node. We define the
weighted degree dwi of a node i as the weighted number
of hyperedges it belongs to (15), that is:

dwi :=
∑

e∈E:i∈e

Ae =
∑

e∈Ω:i∈e

Ae ,

due to the fact that Ae = 0 for non-existing hyperedges
Ae ∈ Ω \E. Since Ae is a random variable, the degree of

http://github.com/nickruggeri/Hy-MMSBM

11

node i is also random and has expectation

E[dwi] =
∑

e∈Ω:i∈e

E[Ae] =
∑

e∈Ω:i∈e

λe

κe

=
∑

e∈Ω:i∈e

1

κe

 ∑
j∈e:j ̸=i

uT
i wuj +

∑
j<m∈e:j,m, ̸=i

uT
j wum

=

∑
e∈Ω:i∈e

1

κe

∑
j∈e:j ̸=i

uT
i wuj

+
∑

e∈Ω:i∈e

1

κe

∑
j<m∈e:j,m, ̸=i

uT
j wum

=
∑

j∈V :j ̸=i

[
D∑

n=2

(
N−2
n−2

)
κn

]
uT
i wuj

+
∑

j<m∈V :j,m ̸=i

[
D∑

n=3

(
N−3
n−3

)
κn

]
uT
j wum

=

[
D∑

n=2

(
N−2
n−2

)
κn

]uT
i w

 ∑
j∈V :j ̸=i

uj

+

[
D∑

n=3

(
N−3
n−3

)
κn

] ∑
j<m∈V :j,m ̸=i

uT
j wum

 . (A2)

The step from the fourth to fifth row is justified
by counting the number of hyperedges of every size
n (normalized by the relative κn) where both nodes i
and j are contained. Notice that the second summand∑

j<m∈V :j,m ̸=i u
T
j wum has computational cost of O(N2).

We can reduce this to O(N) by making the following gen-
eral observation, which will also be used in other deriva-
tions.
For any fixed set of nodes S and defining s :=

∑
j∈S uj :∑

j<m∈S

uT
j wum =

1

2

∑
j,m∈S,j ̸=m

uT
j wum

=
1

2

 ∑
j,m∈S

uT
j wum −

∑
j∈S

uT
j wuj

=

1

2

∑
j∈S

∑
m∈S

uT
j wum −

∑
j∈S

uT
j wuj

=

1

2

sTws−
∑
j∈S

uT
j wuj

 . (A3)

Both these terms can be calculated in O(|S|).
In the case of the expected degree of node i, the second
summand of Eq. (A2) can be computed with S = V \
{i}, while the first summand can be directly computed
in linear time.

b. Expected weighted degree. This is the average
weighted degree of all the nodes in the network, and is

given by

⟨dw⟩ = 1

N

∑
i∈V

E[dwi] =
1

N

∑
i∈V

∑
e∈Ω:i∈e

λe

κe

=
1

N

∑
e∈Ω

∑
i∈e

λe

κe
=

1

N

∑
e∈Ω

|e| λe

κe

=
1

N

∑
e∈Ω

|e|
κe

∑
i<j∈e

uT
i wuj

=
1

N

(
D∑

n=2

(
N − 2

n− 2

)
n

κn

) ∑
i<j∈V

uT
i wuj . (A4)

This quantity can be reduced to O(N) cost by utilizing
the trick in Eq. (A3).

c. Accounting only for specified interactions The
statistics described above can also be computed by tak-
ing into account only interactions of a fixed size. For
example, a user might be interested in computing the ex-
pected degree of a node by considering only hyperedges
of sizes up to a certain value, or only for a fixed hyper-
edge size. These can be readily computed by repeating
the derivations above. For example, computing the ex-
pected degree in Eq. (A4) only for hyperedges of sizes
2, 3 or 4, we obtain

1

N

(
4∑

n=2

(
N − 2

n− 2

)
n

κn

) ∑
i<j∈V

uT
i wuj .

Notice that only the multiplicative constant∑4
n=2

(
N−2
n−2

)
n
κn

has changed.

2. Choosing the normalization κn

The normalization constant κn rescales the probabili-
ties of the hyperedges of size n. This rescaling is needed
to contrast the effects of the high-dimensional configura-
tion space Ω. Removing the constant (i.e. setting κn ≡ 1
for all n) yields exploding statistics due to the combina-
torial factors appearing for larger hyperedges, see e.g.
Eq. (A4).

While it is theoretically possible to sample from a
model with such κn values, the expected degree and size
sequences would not match those observed in real data.
In all our experiments we choose instead the following
form for κn, in a way that yields reasonable expected
statistics:

κn :=
n(n− 1)

2

(
N − 2

n− 2

)
. (A5)

This expression satisfies two important properties. First,
κ2 = 1, so that the probabilistic model restricted to bi-
nary interactions is equivalent to the standard Poisson
stochastic block model, second, the expected degree in

12

Eq. (A4) reduces to

⟨dw⟩ = 1

N

(
D−1∑
n=1

1

n

) ∑
i<j∈V

uT
i wuj .

This avoids combinatorial explosions in the expected de-
gree, allowing to tune the model based only on u,w.
The form (A5) has also a valid interpretation. The bino-

mial
(
N−2
n−2

)
normalizes for the number of possible hyper-

edges of size n that any two fixed nodes belong to (since
one needs to choose the remaining n − 2 nodes in the

hyperedge among the possible N − 2). The value n(n−1)
2

is the number of possible binary interactions among n
nodes, and is used to take the average of the summands
appearing in the expression (A1) for the sufficient statis-
tics: λe =

∑
i<j∈e u

T
i wuj . We also note that similar

combinatorial expressions arise naturally in the litera-
ture, due to the exploding configuration space (53, 93).
While practitioners can make other possible choices with
similar properties, e.g. κn =

(
N−2
n−2

)
or κn = 2

n

(
N−2
n−2

)
, we

remark that the methodology and the theory proposed
in this paper hold for any choice of κn > 0.

Appendix B: Technical details about sampling

We include here all the technical details to approxi-
mately sample from the probabilistic model. We start by
giving some definitions, then we proceed to outline the
three sampling steps introduced in Section III. In the fol-
lowing, we consider any fixed choice of parameters u,w.
Notice also that all the probabilities p(·) utilized in this
section depend on u,w. To avoid clutter, we implicitly
assume this dependency in the following derivations.

Definition. The unweighted (or binary) hypergraph is
the hypergraph with Ab ∈ {0, 1}|Ω| derived from the orig-
inal weights A ∈ N|Ω|. Formally:

Ab
e := δ(Ae > 0) , ∀e ∈ Ω .

The binary degree sequence d is the degree sequence in
the binary hypergraph. In other words, it is the degree
sequence in the original hypergraph if we consider the hy-
peredges as unweighted.

The sampling procedure is divided in three consecutive
steps:

• First, approximately sample the binary degree and
size sequences (d, k).

• Second, sample the binary hypergraph Ab from
p(Ab|d, k). Notice that, since we sample a binary
hypergraph, hyperedges can only exist or not, i.e.
Ab

e ∈ {0, 1} ∀e ∈ Ω.

• Third, sample the weights of the final graph given
the binary one: p(A|Ab).

Why is this correct? We aim at sampling from p(A). The
procedure above corresponds instead to sampling from
p(A,Ab, d, k), so why is this correct? Notice that

A uniquely defines Ab

Ab uniquely defines (d, k) .

Thus, if all the sampled quantities A,Ab, d, k are compat-
ible, we can observe that both the following equalities are
true:

p(A,Ab, d, k) = p(Ab, d, k|A) p(A)

= p(A)

p(A,Ab, d, k) = p(A|Ab, d, k) p(Ab|d, k) p(d, k)
= p(A|Ab) p(Ab|d, k) p(d, k) ,

hence

p(A) = p(A|Ab) p(Ab|d, k) p(d, k) .

Having verified the consistency of our sampling routine,
we now proceed describing the three steps in more details.

1. Sampling the binary degree and
size sequences

The sequences d, k cannot be sampled exactly and
efficiently. We propose instead an approximation based
on a version of the Central Limit Theorem.

Consider the binary degree sequence d. For a node i, we
need to sample the number di of existing hyperedges that
i belongs to:

di :=
∑

e∈Ω:i∈e

δ(Ae > 0) . (B1)

Notice that the summands δ(Ae > 0) are indepen-
dent Bernoulli random variables with probability

pe = 1−Pois(Ae = 0;λe/κe) = 1− exp
(
−λe

κe

)
, therefore

easy to sample one by one. Due to the exponential
size of Ω, however, sampling all of them is practically
impossible.

Similarly, consider the size sequence k. For every hyper-
edge size ℓ ∈ {2, . . . , D} (potentially up to D = N), we
need to sample the number kℓ of hyperedges of such size,
defined as:

kℓ =
∑
e∈Ωℓ

δ(Ae > 0) ,

where Ωℓ = {e ∈ Ω | |e| = ℓ}. The following theorem
helps in approximately sampling these quantities.

Theorem 1. Consider di, kℓ as defined above. Further-
more, assume that u is bounded, i.e. ∃L > 0 : u < L,

13

where the inequality is intended element-wise. Then:

a. For any hyperedge size ℓ ≥ 3, both di and kℓ
satisfy the assumptions of the Lyapunov Central
Limit Theorem (see Appendix D for the statement).
Thus, they can be approximately sampled from a
Gaussian.

b. Furthermore, if we assume that the assignments
u are lower bounded away from zero, i.e. ∃ϵ >
0 s.t. u > ϵ, then the statement above also holds
for ℓ = 2.

c. To a first-degree approximation, we can compute
the mean and variance needed for the asymptotic
Gaussian distributions as:

E[kℓ] ≈ Var(kℓ) ≈
∑
e∈Ωℓ

λe

κe
(B2)

E[di] ≈ Var(di) ≈
∑

e∈Ω:i∈e

λe

κe
, (B3)

i.e. can be approximated by the weighted number of
hyperedges and weighted degree.

The proof can be found in Appendix C. Practically,
the sampling proceeds as follows. First, we compute the
theoretical values in Eqs. (B2) and (B3), this can be done
in linear time similarly to the statistics in Appendix A1.
Then, we separately sample d, k from Gaussian distribu-
tions with the given means and variances. Since both
sequences d, k need to take integer values, we then round
the samples element-wise to the closest integer. Finally,
we combine the sampled sequences into a first list of hy-
peredges, representing a binary (i.e. unweighted) hyper-
graph. We describe the recombining algorithm in Ap-
pendix E.

2. Sampling the binary hypergraph

Once we condition on the binary degree and size se-
quences, we sample which hyperedges will be present in
the final hypergraph, i.e. all e ∈ Ω such that Ab

e = 1.
Formally, the conditional sampling of hyperedges can
be performed via the MCMC procedure introduced in
Chodrow et al. (53). For this, we use a hyperedge reshuf-
fling operator to define the MCMC steps yielding a valid
Markov chain that preserves the initial d, k. The Markov
chain starts from a proposal list of hyperedges that is
then modified at every step. Notice that the main differ-
ence with the MCMC procedure proposed in the original
paper is that the acceptance-rejection probabilities are
based on our generative models, and hence they depend
on the u,w parameters. Hence, we present next how to
compute such probabilities in detail.

During the MCMC, we start from two hyperedges
e1, e2 and shuffle them to form two new hyperedges e′1, e

′
2.

Importantly, one of the properties of the shuffle opera-
tor is that |e1| = |e′1| and |e2| = |e′2|. The Metropolis-
Hastings transition probability to be computed is then:

p(new configuration)

p(current configuration)

=
p(Ae1 = 0) p(Ae2 = 0) p(Ae′1

= 1) p(Ae′2
= 1)

p(Ae1 = 1) p(Ae2 = 1) p(Ae′1
= 0) p(Ae′2

= 0)

=

(
exp

(
λe′1
κe′1

)
− 1

)(
exp

(
λe′2
κe′2

)
− 1

)
(
exp

(
λe1

κe1

)
− 1
)(

exp
(

λe2

κe2

)
− 1
) .

For some hyperedges it could happen that κe ≫ λe,
which may lead to numerical instabilities, as over or un-
derflows in the exponentials (the same holds for the other
hyperedges). To mitigate this risk we compute all the λ
and the κ in log-space. Using the fact that ex − 1 ≈ x
when x ≪ 1, if we measure that for a hyperedge e we
have log κe − log λe > τ for a certain threshold τ , then
we apply the approximation

exp

(
λe

κe

)
− 1 ≈ λe

κe
.

In practice, when one among e1 and e′1 (and similarly for
e2, e

′
2) satisfies the above condition, then we approximate

the following ratio as:

exp

(
λe′1
κe′1

)
− 1

exp
(

λe1

κe1

)
− 1

≈

(
λe′1
κe′1

)
(

λe1

κe1

) =
λe′1

λe1

,

where the last step is due to the fact that the hyper-
edges have the same size, i.e. |e1| = |e′1|. This avoids
computing the κ values.

3. Sampling the weights of the hypergraph

Finally, we need to sample the Poisson weights from
p(A|Ab). Provided that the Ab weights yield a sparse
realization, we only need to sample the weights of the
few hyperedges present, signalled by Ab = 1. Hence, we
need to sample from the distribution

P(Ae = n|Ab
e = 1) = P(Ae = n|Ae > 0) ,

which is a zero-truncated Poisson distribution. Sampling
from such a distribution efficiently is not immediate, we
propose a solution based on inverse transform sampling
(94) next.

Consider a Poisson random variable X ∼ Pois(λ). We
aim at sampling from the distribution of the random vari-
able Y defined as

Y := X|X > 0 .

14

To this end, we compute the cumulative distribution
function (cdf) of Y . For any v ∈ N \ {0}

FY (v) = P(Y ≤ v)

=

v∑
m=1

P(Y = m)

=
1

1− e−λ

v∑
m=1

P(X = m)

=
FX(v)− P(X = 0)

1− e−λ

=
FX(v)− e−λ

1− e−λ
.

Its inverse, called inverse-cdf or percent-point-function,
is given for any p ∈ [0, 1] by

QY (p) = min {v ∈ N | p ≤ FY (v)}

= min

{
v ∈ N | p ≤ FX(v)− e−λ

1− e−λ

}
= min

{
v ∈ N | e−λ + p(1− e−λ) ≤ FX(v)

}
= QX(e−λ + p(1− e−λ)) . (B4)

Thus, one can sample from Y by drawing a uniform ran-
dom variable p ∼ Unif(0, 1) and computing QY (p) via
Eq. (B4). Crucially, this is cheap to compute (and simple
to implement) because it corresponds to the inverse-cdf
of a Poisson distribution.

Appendix C: Proof of Theorem 1

Proof. The derivations for the binary degree and size se-
quences are very similar, for simplicity we only present
a proof for the size sequence kℓ, for any fixed possible
value of ℓ. In the following, call Ie := δ(Ae > 0) and pe

its Bernoulli probability pe = 1− exp
(
−λe

κℓ

)
.

a. Lyapunov CLT for ℓ ≥ 3 A possible way to show
that the Lyapunov CLT applies, is to show that

lim
N→+∞

∑
e∈Ωℓ E

[
|Ie − E[Ie]|3

]
(√∑

e∈Ωℓ Var(Ie)
)3 = 0 . (C1)

First, observe that:

lim
N→+∞

∑
e∈Ωℓ E

[
|Ie − E[Ie]|3

]
(√∑

e∈Ωℓ Var(Ie)
)3

= lim
N→+∞

∑
e∈Ωℓ pe(1− pe)

(
(1− pe)

2 + p2e
)(∑

e∈Ωℓ pe(1− pe)
)3/2

≤ 2 lim
N→+∞

∑
e∈Ωℓ pe(1− pe)(∑

e∈Ωℓ pe(1− pe)
)3/2

= 2 lim
N→+∞

1(∑
e∈Ωℓ pe(1− pe)

)1/2 .

Hence, proving that
∑

e∈Ωℓ pe(1−pe)→ +∞, means that
the Lyapunov condition in Eq. (C1) is satisfied. Due to
the assumption that the u are bounded, there exists some
0 < L′ < 1 such that pe < L′ for all e (recall that pe
depends on u through λe in Eq. (A1)). In the following
derivation, let i, j ∈ V be two arbitrary nodes. Then:∑
e∈Ωℓ

pe(1− pe) ≥ (1− L′)
∑
e∈Ωℓ

pe

≥ (1− L′)
∑

e∈Ωℓ:i,j∈e

pe

= (1− L′)
∑

e∈Ωℓ:i,j∈e

[
1− exp

(
−
∑

l<m∈e u
T
l wum

κℓ

)]

≥ (1− L′)
∑

e∈Ωℓ:i,j∈e

[
1− exp

(
−uT

i wuj

κℓ

)]

= (1− L′)

[
1− exp

(
−uT

i wuj

κℓ

)] ∑
e∈Ωℓ:i,j∈e

1 .

Finally, notice that
∑

e∈Ωℓ:i,j∈e 1→ +∞ with N → +∞,
due to the fact that the number of hyperedges containing
i, j tends to infinity (if the hyperedge size ℓ is at least 3).

b. Lyapunov CLT for ℓ = 2 Here we also assume
that u < ϵ. Then there exists some L′′ > 0 s.t., for any
two nodes m and l, their interaction is bounded away
from zero, i.e. uT

l wum > L′′. Similarly to above, let i be
an arbitrary node:∑
e∈Ωℓ

pe(1− pe) ≥ (1− L′)
∑

e∈Ωℓ:i∈e

pe

= (1− L′)
∑

e∈Ωℓ:i∈e

[
1− exp

(
−
∑

l<m∈e u
T
l wum

κℓ

)]

≥ (1− L′)
∑

e∈Ωℓ:i∈e

[
1− exp

(
−L′′

κℓ

)]

= (1− L′)

[
1− exp

(
−L′′

κℓ

)] ∑
e∈Ωℓ:i∈e

1 .

Similar to the case for ℓ ≥ 3, the quantity
∑

e∈Ωℓ:i∈e 1
tends to infinity for diverging values of N .

15

c. Approximation of the statistics The statistics
E[kℓ] and Var[kℓ] are hard to compute efficiently in closed
form. However, we can approximate them using the fact
that 1 − e−x ≈ x and (1 − e−x) e−x ≈ x, when x ≪ 1.
Then

E[kℓ] =
∑
e∈Ωℓ

1− e
−λe

κℓ ≈
∑
e∈Ωℓ

λe

κℓ

Var(kℓ) =
∑
e∈Ωℓ

(
1− e

−λe
κℓ

)
e
−λe

κℓ ≈
∑
e∈Ωℓ

λe

κℓ
.

We expect these approximations to be valid when λe

κe
≪

1. This is a sparse regime attained when only few among
all the possible hyperedges are present and is a realistic
assumption in many practical applications.

Appendix D: Lyapunov Central Limit Theorem

We state here the Lyapunov Central Limit Theorem
(95) that we utilize in our main proof in Appendix C.

Theorem 2. Consider a sequence of independent ran-
dom variables {Xi}i∈N, and define µi := E[Xi], and
σ2
i := Var(Xi). Also, define

s2n :=

n∑
i=0

σ2
i .

If there exists some ϵ > 0 such that

lim
n→+∞

1

s2+ϵ
n

n∑
i=0

E
[
|Xi − µi|2+ϵ

]
= 0 ,

then the quantity

1

sn

n∑
i=0

(Xi − µi)

converges in distribution to a standard Gaussian random
variable.

Appendix E: A matching algorithm for the d, k
sequences

After separately sampling the binary degree sequence
d and the size sequence k, as described in Appendix B 1,
these need to be combined to obtain a valid set of hy-
peredges. However, given two arbitrary sequences d, k,
there does not necessarily exist a hypergraph that satis-
fies both. For example, the average (unweighted) degree
can be calculated both from d and k; the two values ob-
tained need to match. For this reason, we need a “match-
ing algorithm” to extract a set of hyperedges that are
consistent with both d, k. Notice that this task in not
straightforward. Indeed, also Chodrow (53)—who first

introduced the Markov chain shuffling procedure—had
to start the MCMC from a valid hyperedge list. The
currently available implementation (96) can only repli-
cate the sequences of existing hypergraphs, but it is not
clear how to proceed from scratch with no initial data,
thus reducing the applicability of the method. Our work
generalizes the sampling to arbitrary starting sequences.
This is a contribution in-and-of-itself, as in principle this
could be applied to other sampling procedures with dif-
ferent underlying generative processes than the one we
described in Section II, as long as they provide some ini-
tial d, k sequences.

Before presenting our method, we make some remarks.
First, sampling separately d, k assumes the approxima-
tion p(d, k) ≈ p(d) p(k). The matching procedure miti-
gates the impact of this approximation, as it modifies one
of the two sequences should they not match. Second, it
is possible to start the MCMC directly from the hyper-
edge configuration of a real hypergraph, as we illustrate
in our experiments with real data in Section V. This ef-
fectively corresponds to fixing the sequences d, k to those
of the data, which are necessarily consistent. These are
then preserved during MCMC while the hyperedges are
mixed. Hence, in this case there is no need for a match-
ing algorithm. We thus assume that a user would like
to start from a desired set of values for both quantities,
without worrying about their consistency.

We now describe our proposed matching algorithm. If
there exists at least one hypergraph with sequences d, k,
we call d and k compatible. Our algorithm guarantees
that, if d, k are compatible, one hypergraph with such
sequences will be produced. If they are not compati-
ble, however —as is the case for most samples from Ap-
pendix B 1—only one of them can be preserved. For this
reason, the user is required to specify which sequence
needs to be preserved; we refer to this as the priority
sequence. The algorithm dynamically modifies d, k until
exhaustion of the priority sequence, if the sequences are
compatible then no modification to the other sequence
will be made, as they will terminate together. Intuitively,
our algorithm works as follows. It extracts a hyperedge
of a given size from the nodes with the highest available
degrees, until exhaustion of the size sequence k. If k is
the priority sequence and no nodes are available, ran-
dom nodes are extracted to satisfy the required hyper-
edge sizes, otherwise smaller hyperedges might be pro-
duced. After exhaustion of the size sequence, if d is still
not exhausted, but it is the priority sequence, keep draw-
ing hyperedges to exhaust d (even if k is not preserved).
The function described in Algorithm 3 draws the hyper-
edges and prioritizes d or k depending on the priority
sequence. We present a pseudocode description of the
matching algorithm in Algorithm 2.

16

Algorithm 2: Hyperedge construction
from sequences

Input: Degree sequence d, size sequence k,
priority sequence choice
pr ∈ {degseq, dimseq}

Result: List of hyperedges L

> Iterate over hyperdge sizes and
specified number of such hyperedges

1 L = []
2 for s = 2, . . . , D do
3 for j = 1, . . . , ki do
4 hye = ExtractHye(s, d, k, pr)
5 if len(hye) > 1 then
6 L ← L + [hye]
7 end

8 end

9 end
> If the priority is the degree sequence,
have all nodes reach the required degree

> Call GeTwo the function counting the
number of nodes with non-zero degrees in
the sequence

10 if pr = degseq then
> While there are at least two nodes
with non-zero remaining degree,
produce hyperedges

11 while GeTwo(d) ≥ 2 do
12 maxdim ← min(GeTwo(d), D)
13 s← random{2, . . . , maxdim}
14 hye ← ExtractHye(s, d, k, pr)
15 L ← L + [hye]

16 end

17 end

Appendix F: Generation of the synthetic data

We include additional details for the generation of the
data utilized in Section Section IVC. We generate data
with N = 500 nodes, K = 3 equally-sized communities,
and hard community assignments. The adjacency
matrix w is the K × K identity matrix. Additionally,
we condition on a size sequence, i.e. the count of
hyperedges per hyperedge dimension, given by: { 2:
500, 3: 400, 4: 400, 5: 400, 6: 600, 7:
700, 8: 800, 9: 900, 10: 1000, 11: 1100,
12: 1200, 13: 1300, 14: 1400, 15: 1500 } .
The expected degree resulting from such a sequence is
248.6. Like for other experiments, we utilize the default
MCMC configuration of nb = 100000 burn-in steps and
ni = 20000 steps between samples.

Algorithm 3: ExtractHye

Input: Hyperedeg size s, degree sequence d, size
sequence k, priority sequence choice
pr ∈ {degseq, dimseq}

Result: A hyperedge hye.
The input d is modified in place.

> Extract one hyperedge while preserving
the degree or size sequence

1 if pr = degseq then
2 hye ← {s nodes v with the highest dv values.
3 If not enough nodes satisfy dv > 0,

possibly return less than s nodes}
4 end
5 else if pr = dimseq then
6 hye ← {s nodes v with the highest dv values.
7 If not enough nodes satisfy dv > 0,

8 select some random nodes with dbv = 0
9 untill s nodes are chosen.}

10 end

> Update the degree sequence by decreasing
the degree of the selected nodes

11 for v in hye do
12 if dv > 0 then
13 dv ← dv − 1
14 end

15 end

Appendix G: Matching sequences on the House Bills
dataset

In Fig. 8 we show the perfect correspondence between
the degree and size sequences as observed in the real data
and in the samples. As we initialize our sampling proce-
dure directly from the hyperedge configuration of the real
data, such correspondence is guaranteed by the proper-
ties of the reshuffling operator.

Appendix H: Structural measures from
configuration model

For comparison, here we run the experiments in Sec-
tion VB, but create samples via the hypergraph config-
uration model from Chodrow (53), as opposed to our
method. The configuration model takes a dataset and
mixes its hyperedges preserving the initial degree and size
sequences. In this sense, it can be seen as a less struc-
tured version of the method we propose here. In Fig. 9,
we show the adjacency matrix, hyperedge inclusions, hy-
peredge eigenvector centrality and sub-hypergraph cen-
trality computed on samples based on the House Bills
dataset. As can be observed, the samples obtained via
the configuration model have less resemblance to the orig-
inal dataset.

17

0 250 500 750 1000 1250 1500

Node

0

5

10

15

20

N
o
d

e
D

eg
re

e

Sample

Dataset

2 6 10 14 18 22
Hyperedge Size

1

3

5

7

C
ou

n
t

×102×103

Degree
Sequence

Size
Sequence

FIG. 8: Correspondence of the degree and size se-
quences between data and samples. We check for
the correspondence between the sequences of the samples
and the original House Bills dataset, which is utilized to
initialize the MCMC procedure. Due to the properties of
the reshuffling operator, the sequences need to coincide.

REFERENCES

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-
U. Hwang, Complex networks: Structure and dynamics.
Physics Reports 424, 175–308 (2006).

[2] D. J. Watts, S. H. Strogatz, Collective dynamics of
‘small-world’networks. nature 393, 440–442 (1998).

[3] V. Latora, M. Marchiori, Efficient behavior of small-
world networks. Physical review letters 87, 198701
(2001).

[4] A.-L. Barabási, R. Albert, Emergence of scaling in ran-
dom networks. science 286, 509–512 (1999).

[5] S. Fortunato, Community detection in graphs. Physics
reports 486, 75–174 (2010).

[6] M. E. Newman, M. Girvan, Finding and evaluating com-
munity structure in networks. Physical review E 69,
026113 (2004).

[7] A. Lancichinetti, S. Fortunato, F. Radicchi, Bench-
mark graphs for testing community detection algorithms.
Physical review E 78, 046110 (2008).

[8] S. Fortunato, D. Hric, Community detection in networks:
A user guide. Physics reports 659, 1–44 (2016).

[9] A. Arenas, A. Diaz-Guilera, C. J. Pérez-Vicente, Syn-
chronization reveals topological scales in complex net-
works. Physical review letters 96, 114102 (2006).

[10] A. Nematzadeh, E. Ferrara, A. Flammini, Y.-Y. Ahn,
Optimal network modularity for information diffusion.
Physical review letters 113, 088701 (2014).

[11] M. Coscia, L. Rossi, How minimizing conflicts could lead
to polarization on social media: An agent-based model
investigation. PloS one 17, e0263184 (2022).

[12] C. Bordier, C. Nicolini, A. Bifone, Graph analysis and
modularity of brain functional connectivity networks:
searching for the optimal threshold. Frontiers in neu-
roscience 11, 441 (2017).

[13] D. Lusher, J. Koskinen, G. Robins, Exponential random
graph models for social networks: Theory, methods, and
applications (Cambridge University Press, 2013).

[14] E. A. Hobson, M. J. Silk, N. H. Fefferman, D. B. Lar-
remore, P. Rombach, S. Shai, N. Pinter-Wollman, A
guide to choosing and implementing reference models for
social network analysis. Biological Reviews 96, 2716–
2734 (2021).

[15] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lu-
cas, A. Patania, J.-G. Young, G. Petri, Networks beyond
pairwise interactions: structure and dynamics. Physics
Reports 874, 1–92 (2020).

[16] L. Torres, A. S. Blevins, D. Bassett, T. Eliassi-Rad, The
why, how, and when of representations for complex sys-
tems. SIAM Review 63, 435-485 (2021).

[17] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Fer-
raz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi,
V. Latora, Y. Moreno, et al., The physics of higher-
order interactions in complex systems. Nature Physics
17, 1093–1098 (2021).

[18] F. Battiston, G. Petri, Higher-Order Systems (Springer,
2022).

[19] G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris,
D. Nutt, P. J. Hellyer, F. Vaccarino, Homological scaf-
folds of brain functional networks. Journal of The Royal
Society Interface 11, 20140873 (2014).

[20] C. Giusti, R. Ghrist, D. S. Bassett, Two’s company, three
(or more) is a simplex. Journal of Computational Neu-
roscience 41, 1–14 (2016).

[21] A. Santoro, F. Battiston, G. Petri, E. Amico, Higher-
order organization of multivariate time series. Nature
Physics pp. 1–9 (2023).

[22] A. Patania, G. Petri, F. Vaccarino, The shape of collab-
orations. EPJ Data Science 6, 1–16 (2017).

[23] J. Grilli, G. Barabás, M. J. Michalska-Smith, S. Allesina,
Higher-order interactions stabilize dynamics in competi-
tive network models. Nature 548, 210–213 (2017).

[24] S. Klamt, U.-U. Haus, F. Theis, Hypergraphs and cellu-
lar networks. PLOS Computational Biology 5, e1000385
(2009).

[25] A. Zimmer, I. Katzir, E. Dekel, A. E. Mayo, U. Alon, Pre-
diction of multidimensional drug dose responses based on
measurements of drug pairs. Proceedings of the National
Academy of Sciences 113, 10442–10447 (2016).

[26] G. Cencetti, F. Battiston, B. Lepri, M. Karsai, Temporal
properties of higher-order interactions in social networks.
Scientific Reports 11, 1–10 (2021).

[27] F. Musciotto, D. Papageorgiou, F. Battiston, D. R.
Farine, Beyond the dyad: uncovering higher-order struc-
ture within cohesive animal groups. bioRxiv (2022).

[28] C. Bick, P. Ashwin, A. Rodrigues, Chaos in generically
coupled phase oscillator networks with nonpairwise in-
teractions. Chaos: An Interdisciplinary Journal of Non-
linear Science 26, 094814 (2016).

[29] P. S. Skardal, A. Arenas, Higher order interactions in
complex networks of phase oscillators promote abrupt
synchronization switching. Communications Physics 3,
1–6 (2020).

[30] A. P. Millán, J. J. Torres, G. Bianconi, Explosive higher-
order kuramoto dynamics on simplicial complexes. Phys-
ical Review Letters 124, 218301 (2020).

[31] M. Lucas, G. Cencetti, F. Battiston, Multiorder laplacian
for synchronization in higher-order networks. Physical
Review Research 2, 033410 (2020).

[32] L. V. Gambuzza, F. Di Patti, L. Gallo, S. Lepri, M. Ro-
mance, R. Criado, M. Frasca, V. Latora, S. Boccaletti,
Stability of synchronization in simplicial complexes. Na-

18

FIG. 9: Comparing the statistics on real data and samples obtained from the configuration model. We
plot (A) the adjacency matrices, (B) the hyperedge inclusions occurences, (C) the hyperedge eigenvector centrality
distribution and (D) the sub-hypergraph centrality distribution for the House Bills dataset. Here, samples are obtained
via the hypergraph configuration model (53). Due to less structure being incorporated into the sampling procedure,
samples and real data present substantial differences.

ture Communications 12, 1–13 (2021).
[33] I. Iacopini, G. Petri, A. Barrat, V. Latora, Simplicial

models of social contagion. Nature Communications 10,
1–9 (2019).

[34] S. Chowdhary, A. Kumar, G. Cencetti, I. Iacopini,
F. Battiston, Simplicial contagion in temporal higher-
order networks. Journal of Physics: Complexity 2,
035019 (2021).

[35] L. Neuhäuser, A. Mellor, R. Lambiotte, Multibody inter-
actions and nonlinear consensus dynamics on networked
systems. Physical Review E 101, 032310 (2020).

[36] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner,
A. Jadbabaie, Random walks on simplicial complexes and
the normalized hodge 1-laplacian. SIAM Review 62, 353–
391 (2020).

[37] T. Carletti, F. Battiston, G. Cencetti, D. Fanelli, Ran-
dom walks on hypergraphs. Physical Review E 101,
022308 (2020).

[38] U. Alvarez-Rodriguez, F. Battiston, G. F. de Arruda,
Y. Moreno, M. Perc, V. Latora, Evolutionary dynamics
of higher-order interactions in social networks. Nature
Human Behaviour 5, 586–595 (2021).

[39] A. Civilini, N. Anbarci, V. Latora, Evolutionary game
model of group choice dilemmas on hypergraphs. Physical
Review Letters 127, 268301 (2021).

[40] C. Berge, Graphs and hypergraphs (North-Holland Pub.
Co., 1973).

[41] A. R. Benson, Three hypergraph eigenvector centralities.
SIAM Journal on Mathematics of Data Science 1, 293–
312 (2019).

[42] F. Tudisco, D. J. Higham, Node and edge nonlinear
eigenvector centrality for hypergraphs. Communications
Physics 4, 1–10 (2021).

[43] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie,
J. Kleinberg, Simplicial closure and higher-order link pre-
diction. Proceedings of the National Academy of Sciences
115, E11221–E11230 (2018).

[44] Q. F. Lotito, F. Musciotto, A. Montresor, F. Battiston,
Higher-order motif analysis in hypergraphs. Communi-
cations Physics 5, 79 (2022).

[45] F. Musciotto, F. Battiston, R. N. Mantegna, Detect-
ing informative higher-order interactions in statistically
validated hypergraphs. Communications Physics 4, 1–9
(2021).

[46] M. Contisciani, F. Battiston, C. De Bacco, Inference of
hyperedges and overlapping communities in hypergraphs.
Nature Communications 13, 7229 (2022).

[47] J.-G. Young, G. Petri, T. P. Peixoto, Hypergraph recon-
struction from network data. Communications Physics
4, 1–11 (2021).

[48] T. Carletti, D. Fanelli, R. Lambiotte, Random walks and
community detection in hypergraphs. Journal of Physics:
Complexity 2, 015011 (2021).

[49] A. Eriksson, D. Edler, A. Rojas, M. de Domenico,
M. Rosvall, How choosing random-walk model and net-

19

work representation matters for flow-based community
detection in hypergraphs. Communications Physics 4,
1–12 (2021).

[50] P. S. Chodrow, N. Veldt, A. R. Benson, Generative hy-
pergraph clustering: From blockmodels to modularity.
Science Advances 7, eabh1303 (2021).

[51] O. T. Courtney, G. Bianconi, Generalized network struc-
tures: The configuration model and the canonical en-
semble of simplicial complexes. Physical Review E 93,
062311 (2016).

[52] J.-G. Young, G. Petri, F. Vaccarino, A. Patania, Con-
struction of and efficient sampling from the simplicial
configuration model. Physical Review E 96, 032312
(2017).

[53] P. S. Chodrow, Configuration models of random hyper-
graphs. Journal of Complex Networks 8, cnaa018 (2020).

[54] M. Barthelemy, Class of models for random hypergraphs.
Phys. Rev. E 106, 064310 (2022).

[55] K. Kovalenko, I. Sendiña-Nadal, N. Khalil, A. Dainiak,
D. Musatov, A. M. Raigorodskii, K. Alfaro-Bittner,
B. Barzel, S. Boccaletti, Growing scale-free simplices.
Communications Physics 4, 1–9 (2021).

[56] A. P. Millán, R. Ghorbanchian, N. Defenu, F. Battiston,
G. Bianconi, Local topological moves determine global
diffusion properties of hyperbolic higher-order networks.
Physical Review E 104, 054302 (2021).

[57] P. Krapivsky, Random recursive hypergraphs. Journal
of Physics A: Mathematical and Theoretical 56, 195001
(2023).

[58] J. Lerner, M. Tranmer, J. Mowbray, M.-G. Hancean,
Rem beyond dyads: relational hyperevent models
for multi-actor interaction networks. arXiv preprint
arXiv:1912.07403 (2019).

[59] G. Robins, P. Pattison, Y. Kalish, D. Lusher, An in-
troduction to exponential random graph (p*) models for
social networks. Social networks 29, 173–191 (2007).

[60] J. Park, M. E. Newman, Statistical mechanics of net-
works. Physical Review E 70, 066117 (2004).

[61] J. Mulder, P. D. Hoff, A latent variable model for re-
lational events with multiple receivers. arXiv preprint
arXiv:2101.05135 (2021).

[62] C. De Bacco, E. A. Power, D. B. Larremore, C. Moore,
Community detection, link prediction, and layer interde-
pendence in multilayer networks. Physical Review E 95,
042317 (2017).

[63] A. Schein, J. Paisley, D. M. Blei, H. Wallach, Proceedings
of the 21th ACM SIGKDD International conference on
knowledge discovery and data mining (2015), pp. 1045–
1054.

[64] T. G. Kolda, B. W. Bader, Tensor decompositions and
applications. SIAM review 51, 455–500 (2009).

[65] D. D. Lee, H. S. Seung, Learning the parts of objects by
non-negative matrix factorization. Nature 401, 788–791
(1999).

[66] B. Karrer, M. E. Newman, Stochastic blockmodels and
community structure in networks. Physical review E 83,
016107 (2011).

[67] N. Ruggeri, M. Contisciani, F. Battiston, C. De Bacco,
Generalized inference of mesoscale structures in higher-
order networks. arXiv preprint arXiv:2301.11226 (2023).

[68] S. L. Hakimi, On realizability of a set of integers as de-
grees of the vertices of a linear graph. i. Journal of the
Society for Industrial and Applied Mathematics 10, 496–
506 (1962).

[69] S. A. Choudum, A simple proof of the erdos-gallai theo-
rem on graph sequences. Bulletin of the Australian Math-
ematical Society 33, 67–70 (1986).

[70] W. K. Hastings, Monte carlo sampling methods using
markov chains and their applications (1970).

[71] P. L. Erdosa, I. Miklósa, The second order degree
sequence problem is np-complete. arXiv preprint
arXiv:1606.00730 (2016).

[72] P. Chodrow, N. Eikmeier, J. Haddock, Nonbacktracking
spectral clustering of nonuniform hypergraphs. SIAM
Journal on Mathematics of Data Science 5, 251–279
(2023).

[73] D. Zhou, J. Huang, B. Schölkopf, Learning with hy-
pergraphs: Clustering, classification, and embedding.
Advances in neural information processing systems 19
(2006).

[74] U. Dutta, Sampling random graphs with specified degree
sequences, Ph.D. thesis, University of Colorado at Boul-
der (2022).

[75] J. H. Fowler, Connecting the congress: A study of
cosponsorship networks. Political Analysis 14, 456–487
(2006).

[76] J. H. Fowler, Legislative cosponsorship networks in the
US house and senate. Social networks 28, 454–465
(2006).

[77] E. Estrada, J. A. Rodŕıguez-Velázquez, Subgraph cen-
trality and clustering in complex hyper-networks. Phys-
ica A: Statistical Mechanics and its Applications 364,
581–594 (2006).

[78] Y. Zhang, M. Lucas, F. Battiston, Do higher-order in-
teractions promote synchronization? arXiv preprint
arXiv:2203.03060 (2022).

[79] F. Baccini, F. Geraci, G. Bianconi, Weighted simplicial
complexes and their representation power of higher-order
network data and topology. Physical Review E 106,
034319 (2022).

[80] P. Bonacich, Factoring and weighting approaches to sta-
tus scores and clique identification. Journal of mathe-
matical sociology 2, 113–120 (1972).

[81] A. Bretto, Hypergraph theory. An introduction. Mathe-
matical Engineering. Cham: Springer (2013).

[82] E. Estrada, J. A. Rodriguez-Velazquez, Complex net-
works as hypergraphs. arXiv preprint physics/0505137
(2005).

[83] R. Mastrandrea, J. Fournet, A. Barrat, Contact patterns
in a high school: a comparison between data collected us-
ing wearable sensors, contact diaries and friendship sur-
veys. PloS one 10, e0136497 (2015).

[84] I. Amburg, N. Veldt, A. Benson, Clustering in Graphs
and Hypergraphs with Categorical Edge Labels (Associa-
tion for Computing Machinery, 2020), pp. 706–717.

[85] C. Stewart III, J. Woon, Congressional committee as-
signments, 103rd to 114th congresses, 1993–2017: House,
Tech. rep., MIT mimeo (2008).

[86] D. R. Hunter, S. M. Goodreau, M. S. Handcock, Good-
ness of fit of social network models. Journal of the amer-
ican statistical association 103, 248–258 (2008).

[87] H. J. Spaeth, L. Epstein, A. D. Martin, J. A. Segal, T. J.
Ruger, S. C. Benesh, 2022 supreme court database, ver-
sion 2020 release 1., http://Supremecourtdatabase.org
(2020).

[88] M. Contisciani, E. A. Power, C. De Bacco, Community
detection with node attributes in multilayer networks.
Scientific reports 10, 1–16 (2020).

http://Supremecourtdatabase.org

20

[89] M. E. Newman, A. Clauset, Structure and inference in
annotated networks. Nature communications 7, 1–11
(2016).

[90] X. Zhang, C. Moore, M. E. Newman, Random graph
models for dynamic networks. The European Physical
Journal B 90, 1–14 (2017).

[91] H. Safdari, M. Contisciani, C. De Bacco, Reciprocity,
community detection, and link prediction in dynamic
networks. Journal of Physics: Complexity 3, 015010
(2022).

[92] Q. F. Lotito, M. Contisciani, C. De Bacco, L. Di Gae-
tano, L. Gallo, A. Montresor, F. Musciotto, N. Rug-

geri, F. Battiston, Hypergraphx: a library for higher-
order network analysis. Journal of Complex Networks
11, cnad019 (2023).

[93] S. Pal, Y. Zhu, Community detection in the sparse hy-
pergraph stochastic block model. Random Structures &
Algorithms 59, 407–463 (2021).

[94] S. M. Ross, Simulation (academic press, 2022).
[95] P. Billingsley, Probability and measure (John Wiley &

Sons, 2008).
[96] https://github.com/PhilChodrow/hypergraph.

https://github.com/PhilChodrow/hypergraph

	 A framework to generate hypergraphs with community structure
	Abstract
	Introduction
	Generative model
	Sampling hypergraphs
	Sampling algorithm
	Additional user input

	Synthetic Data
	Community assignment
	Affinity matrix and heterogenous community size
	Analzying community detection
	Computational cost

	Real Data
	Modeling real-world systems
	Comparing data and sample statistics

	Discussion
	Acknowledgements
	The probabilistic model
	Expected statistics
	Choosing the normalization n

	Technical details about sampling
	Sampling the binary degree and size sequences
	Sampling the binary hypergraph
	Sampling the weights of the hypergraph

	Proof of th:binary sequence approx
	Lyapunov Central Limit Theorem
	A matching algorithm for the d, k sequences
	Generation of the synthetic data
	Matching sequences on the House Bills dataset
	Structural measures from configuration model
	References

