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Hypergraphs are widely adopted tools to examine systems with higher-order interactions. Despite recent
advancements in methods for community detection in these systems, we still lack a theoretical analysis of their
detectability limits. Here, we derive closed-form bounds for community detection in hypergraphs. Using a
Message-Passing formulation, we demonstrate that detectability depends on hypergraphs’ structural properties,
such as the distribution of hyperedge sizes or their assortativity. Our formulation enables a characterization of
the entropy of a hypergraph in relation to that of its clique expansion, showing that community detection is
enhanced when hyperedges highly overlap on pairs of nodes. We develop an efficient Message-Passing algorithm
to learn communities and model parameters on large systems. Additionally, we devise an exact sampling routine
to generate synthetic data from our probabilistic model. With these methods, we numerically investigate the
boundaries of community detection in synthetic datasets, and extract communities from real systems. Our results
extend the understanding of the limits of community detection in hypergraphs and introduce flexible mathematical
tools to study systems with higher-order interactions.

I. INTRODUCTION

Modeling complex systems as graphs has broadened our un-
derstanding of the macroscopic features that emerge from the
interaction of individual units. Among the various aspects of
this problem, community detection stands out as a fundamental
task, as it provides a coarse-grained description of a network’s
structural organization. Notably, community structure is ob-
served across different systems, such as food webs [1], spatial
migration and gene flow of animal species [2], as well as in
social networks [3], power grids [4], and others [5].

In the case of networks with only pairwise interactions, there
are solid theoretical results on detectability limits, describing
whether the task of community detection can or cannot succeed
[6–11]. However, many complex systems with interactions that
extend beyond pairs are better modeled by hypergraphs [12],
which generalize the simpler case of dyadic graphs. Phenom-
ena that have been investigated on graphs are now readily
explored on hypergraphs, with examples including diffusion
processes, synchronization, phase transitions [13] and, more
recently, community structure [14–18].

Extending the rigorous results of detectability transitions
for networks to higher-order interactions is a relevant open
question.

One of the main obstacles in modeling hypergraphs is their
intrinsic complexity, which poses both theoretical and compu-
tational challenges and restricts the range of results available
in the literature. The difficulty of defining communities in
hypergraphs and of deriving theoretical thresholds for their
recovery has limited investigations to the study of d-uniform
hypergraphs, i.e., hypergraphs that only contain interactions
among exactly d nodes [19–27].

A related line of literature focuses on the detection of planted
sub-hypergraphs [28, 29] and testing for the presence of com-
munity structure in hypergraphs [30, 31]. Generally, extracting
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recovery results on non-uniform hypergraphs proved to be
demanding, with scarce literature on the subject.

Recently, Chodrow et al. [32] conjectured a recoverability
threshold for their spectral clustering algorithm on non-uniform
hypergraphs. Closer to the scope of our work, Dumitriu and
Wang [18] provide a probabilistic model and bounds for the
theoretical recovery of communities under the same model.
However, such detectability bounds are based on algorithms
which are not feasible in practice, and no empirical demonstra-
tion of the predicted recovery is provided. Furthermore, all
these methods lack a variety of desirable probabilistic features,
such as the estimation of marginal probabilities of a node to
belong to a community, a principled procedure to sample syn-
thetic hypergraphs with prescribed community structure, and
the possibility to investigate the energy landscape of a problem
via free energy estimations.

In this work, we address these issues by deriving a precise
detectability threshold for hypergraphs that depends on the
node degree distribution, the assortativity of the hyperedges,
and crucially, on higher-order properties such as the distribu-
tion of hyperedge sizes. Additionally, we show how these
properties can be formally described via notions of entropy
and information, leading to a clear interpretation of the role of
higher-order interaction in detectability.

Our approach is based on a probabilistic generative model
and a related Bayesian inference procedure, which we utilize
to study the limits of the community detection problem using a
Message-Passing (MP) formulation [33–35], originating from
the cavity method in statistical physics [36, 37]. We focus
on an extension to hypergraphs of the stochastic block model
(SBM) [38, 39], a generative model for networks with com-
munity structure. Several variants of the SBM [15], and of
its mixed-membership version [16, 17], have been extended
to hypergraphs. The model we utilize is an extension of the
dyadic SBM to hypergraphs and allows generalizing the semi-
nal detectability results of Decelle et al. [6, 7] to higher-order
interactions.

In addition to our theoretical contributions, we derive an al-
gorithmic implementation for inferring both communities and
parameters of the models from the data. Our implementation
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scales well to both large hypergraphs and large hyperedges,
owing to a dynamic-program formulation.

Finally, we show how, with additional combinatorial argu-
ments, one can efficiently sample hypergraphs with arbitrary
communities from our probabilistic model. This problem, of-
ten studied in conjunction with inference, deserves its own
attention when dealing with hypergraphs, as recently discussed
in related work [40, 41].

Through numerical experiments, we confirm our theoretical
calculations by showing that our algorithm accurately recovers
the true community structure in synthetic hypergraphs all the
way down to the predicted detectability threshold. We also
illustrate that our approach gives insights into the community
organization of real hypegraphs by analyzing a dataset of group
interactions between students in a school. To facilitate repro-
ducibility, we release open source the code that implements
our inference and sampling procedures [42].

II. THE HYPERGRAPH STOCHASTIC BLOCK MODEL

Consider a hypergraph H = (V,E) where V = {1, ..., N}
is the set of nodes and E the set of hyperedges. A hyperedge e
is a set of two or more nodes. We define Ω = {e : 2 ≤ |e|≤
D}, the set of all possible hyperedges up to some maximum
dimension D ≤ N , with |e| being the size of a hyperedge,
i.e., the number of nodes it contains. Notice that E ⊆ Ω. We
denote with Ae = 1 all e ∈ E and with Ae = 0 hyperedges
e ∈ Ω \ E.

Our Hypergraph Stochastic Block Model (HySBM) is an
extension of the classical SBM for graphs [38, 39]. It partitions
nodes into K communities by assigning a hard membership
ti ∈ [K] ≡ {1, . . . ,K} to each node i ∈ V . It does so
probabilistically, assuming that the likelihood to observe a
hyperedge Ae is a Bernoulli distribution with a parameter that
depends on the memberships {ti}i∈e of its nodes. Formally,
the probabilistic model is summarized as

ti ∼ Cat(n) ∀i ∈ V (1)

Ae | t ∼ Be

(
πe
κ|e|

)
∀e ∈ Ω , (2)

where n = (n1, . . . , nK) is a vector of prior categorical proba-
bilities for the hard assignments ti. The Bernoulli probabilities
are given by

πe =
∑

i<j∈e

ptitj , (3)

with 0 ≤ pab ≤ 1 being elements of a symmetric probability
matrix (also referred to as affinity matrix) and κ|e| a normal-
izing constant that only depends on the hyperedge size |e|.
This can take on any values, provided that it yields sparse hy-
pergraphs where πe/κ|e| = O(1/N) and valid probabilities
πe/κ|e|. We develop our theory for a general form of κ|e| and
elaborate more on its choice in Appendix A. In our experiments
we utilize the value κd =

(
N−2
d−2

)d(d−1)
2 [17, 41].

Our specific formulation of the likelihood is only one among
many alternatives to model communities in hypergraphs. The

likelihood we propose has three main properties. First, HySBM
reduces to the standard SBM when only pairs are present (as
κ2 = 1). Since we aim to develop a model that generalizes the
SBM to hypergraphs, this is an important condition to satisfy.
Second, it enables to develop the MP equations presented in
the following section, which in turn lead to a theoretical char-
acterization of the detectability limits and a computationally
efficient algorithmic implementation. Third, the likelihoods
based on expressions similar to Eq. (3) have been shown to
well describe higher-order interactions that possibly contain
nodes from different communities [41].

For convenience, we work with a rescaled affinity matrix
c = Np, which is of order c = O(1) in sparse hypergraphs.
The log-likelihood L ≡ L(A, t | p, n) evaluates to

L =
∑
e∈Ω

[
Ae log

(
πe
κe

)
+ (1−Ae) log

(
1− πe

κe

)]
+
∑
i∈V

log nti

=
∑
e∈Ω

[
Ae log

( ∑
i<j∈e

ctitj

)
+ (1−Ae)

× log

(
1−

∑
i<j∈e ctitj

Nκe

)]
+
∑
i∈V

log nti + const. ,

(4)

where const. denotes quantities that do not depend on the
parameters of the model.

III. INFERENCE AND GENERATIVE MODELING

A. Induced factor graph representation

The probabilistic model in Eqs. (1)–(2) has a negative log-
likelihood that can be interpreted as the Hamiltonian of a Gibbs-
Boltzmann distribution on the community assignments t:

p(t |A, p, n) = p(A, t | p, n)
p(A | p, n) =

expL(A, t | p, n)
Z

, (5)

where Z is the partition function of the system, that corre-
sponds to the marginal likelihood of the data. The quantity
F = − logZ is also called the free energy. The equivalence
in Eq. (5) allows interpreting the probabilistic model in terms
of factor graphs [34]. Here, the function nodes are hyperedges
f ∈ Ω, and variable nodes are elements of V . The interac-
tions between function and variable nodes can be read directly
from the log-likelihood in Eq. (4). In other words, the prob-
abilistic model induces a factor graph F = (V,F , E) with
variable nodes V = V , function nodes F = Ω and edges
E = {(i, e) ∈ V × F : i ∈ e}. In Fig. 1 we show a graphical
representation of the equivalence between hypergraphs and
factor graphs. For any variable node i and function node f
of the factor graph we define the neighbors, or boundaries, as
∂i = {f ∈ F : (i, e) ∈ E}, being all function nodes adjacent
to i, and ∂f = {i ∈ V : (i, e) ∈ E} being all variable nodes
adjacent to f .
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FIG. 1: Representing hypergraphs as factor graphs. (a)
We depict a hypergraph and its factor graph equivalent. In
the factor graph F , function nodes represent hyperedges. No-
tice that, while the node sets are the same in both represen-
tations, due to the presence of all possible hyperedges in the
log-likelihood in Eq. (4), the factor graph does not only contain
the observed interactions E (black), but also the unobserved
ones Ω \E (gray). (b) In factor graphs, there are two types of
messages: variable-to-function node q (red), and function-to-
variable node q̂ (blue).

B. Message-Passing (MP)

Given the factor graph representation of HySBM, we can
perform Bayesian inference of the community assignments via
message-passing. Originally obtained from the cavity method
on spin glasses [36, 37], MP allows estimating marginal dis-
tributions on the variable nodes of a graphical model by itera-
tively updating messages, auxiliary variables that operate on
the edges of the factor graph. The efficiency of MP comes
from the fact that the structure of the factor graph favors lo-
cally distributed updates. Although exact theoretical results
are only proven on trees, MP has been shown to obtain strong
performance also on locally tree-like graphs [34] and it has
been extended to dense graphs with short loops [43, 44].

Applying MP to our model, the inference procedure yields
expressions for the marginal probabilities qi(a) of a node i to
be assigned to any given community a ∈ [K]. Their values
are obtained as solutions to closed-form fixed-point equations,
which involve messages qi→e(ti) from variable to function
nodes, and q̂e→i(ti), from function to variable nodes. The
messages follow the sum-product updates

qi→e(ti) ∝ nti
∏

f∈∂i\e

q̂f→i(ti) (6)

q̂e→i(ti) ∝
∑

tj :j∈∂e\i

(
πe
κe

)Ae
(
1− πe

κe

)1−Ae ∏
j∈∂e\i

qj→e(tj) ,

(7)

and yield marginal distributions as

qi(ti) ∝ nti
∏
e∈∂i

q̂e→i(ti) . (8)

Notice that, compared to those for graphs, the MP equations
for hypergraphs in Eqs. (6)–(8) present additional challenges.
First, in graphs the updates simplify. One can in fact collapse
the two types of messages (and equations) into a unique one,
since paths (i, f, j) in the factor graph reduce to pairwise in-
teractions (i, j) between nodes. This simplification is not pos-
sible in hypergraphs, as one function node may connect more

than two variable nodes. Second, the dimensionality of the
MP equations grows faster when accounting for higher-order
interactions. Here, the number of function nodes is equal to
|F|= |Ω|=∑D

d=2

(
N
d

)
, yielding |F|= O(2N ) at largeD = N .

In contrast, one gets O(N2) pairwise messages in the updates
for graphs. To produce computationally feasible MP updates
one can assume sparsity, as already done in the dyadic case.
We outline such updates in the following theorem.

Theorem 1. Assuming sparse hypergraphs where c = O(1),
the MP updates satisfy the following fixed-point equations to
leading order in N . For all hyperedges e ∈ E and nodes i ∈ e,
the messages and marginals are given by:

qi→e(ti) ∝ nti

( ∏
f∈E

f∈∂i\e

q̂f→i(ti)

)
exp(−h(ti)) (9)

q̂e→i(ti) ∝
∑

tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e(tj) (10)

qi(ti) ∝ nti

( ∏
f∈E
f∈∂i

q̂f→i(ti)

)
exp(−h(ti)) (11)

h(ti) =
C ′

N

∑
j∈V

∑
tj

ctitjqj(tj) , (12)

where C ′ =
∑D

d=2

(
N−2
d−2

)
1
κd

.

A proof of Theorem 1 is provided in Appendix B. The up-
dates in Eqs. (9)–(12) are in principle computationally feasible,
as products of function nodes f ∈ E have replaced products
over the entire space f ∈ Ω. In sparse graphs, that we observe
in many real datasets, E is much smaller than the original Ω,
thus significantly decreasing the computation cost. An intuitive
justification of Theorem 1, which we formalize in its proof, is
that the observed interactions f ∈ E hold most of the weight
in the updates of their neighbors, while the unobserved ones
f ∈ Ω \E send approximately constant messages and thus can
be absorbed in the external field h introduced in Eq. (12). This
idea is inspired by the dyadic MP equations in Decelle et al.
[6]. However, in contrast to MP on graphs, a vanilla implemen-
tation of the updates is still not scalable in hypergraphs, as the
computational cost of Eq. (10) is O(K |e|−1). To tackle this
issue, we develop a dynamic programming approach that re-
duces the complexity to O(K2|e|). Dynamic programming is
exact, as it does not rely on further approximations on the MP
updates, its detailed derivations are provided in Appendix D 1.

The fixed-point equations of Theorem 1 naturally suggest
an algorithmic implementation of the MP inference procedure.
We present a pseudocode for it in Appendix D 2.

C. Expectation-Maximization to learn the model parameters

We have presented a MP routine for inferring the community
assignments {ti}i∈V . Now, we derive closed-form updates for
the model parameters c, n via an Expectation-Maximization
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(EM) routine [45]. Differentiating the log-likelihood in Eq. (4)
with respect to n, and imposing the constraint

∑K
a=1 na = 1,

yields the update

na =
Na

N
. (13)

Notice that this update depends on the MP results, as Na =
|{i ∈ V : argmaxb qi(b) = a}| is the count of nodes assigned
to community a according to the inferred marginals. To update
the rescaled affinity c we adopt a variational approach, where
we maximize a lower bound of the log-likelihood, or, equiva-
lently, minimize a variational free energy. In Appendix C, we
show detailed derivations for the following fixed-point updates

c
(t+1)
ab = c

(t)
ab

2
∑

e∈E #e
ab/πe

N C ′ (Nnanb − δabna)
, (14)

where #e
ab =

∑
i<j∈e δtiaδtjb is the count of dyadic interac-

tions between two communities a, b within a hyperedge e. In
practice, when inferring t, n, c one proceeds by alternating MP
inference of t, as presented in Sec. III B, with the updates of c
and n in Eqs. (13)–(14) until convergence. A pseudocode for
the EM procedure is presented in Appendix D 2.

D. Sampling from the generative model

One of the main advantages of using a probabilistic formu-
lation, such as the one presented here, is the ability to generate
data with a desired community structure. Among other tasks,
this can be used in particular to test detectability results like
the ones we theoretically derive in the following section. How-
ever, in hypergraphs, writing a probabilistic model does not
directly imply the ability to sample from it, as is typically the
case for graphs [40, 41]. In fact, while the O(N2) configura-
tion space of graphs allows performing sampling explicitly, in
the case of hypergraphs the exploding configuration space Ω
makes this task prohibitive, even for hypergraphs with moder-
ate number of nodes and hyperedge sizes. Here we propose
a novel sampling algorithm that can efficiently scale and pro-
duce hypergraphs of dimensions in the tens or hundreds of
thousands of nodes. We exploit the hard-membership nature
of the assignments to obtain exact sampling via combinatorial
arguments, as opposed to the approximate sampling in recent
work for mixed-membership models [41]. Owing to this proce-
dure, our results are not limited to theoretical derivations, but
can be tested numerically on synthetic data, as we show below.
Hence, our sampling routine is an essential contribution of this
work. The details of our sampling procedure are presented in
Appendix E and its implementation is open sourced [42].

IV. PHASE TRANSITION

A. Detectability bounds

Beside providing a valid and efficient inference algorithm,
one of the main advantages of MP is the possibility of deriv-
ing closed-form expressions for the detectability of planted

communities. The transition from detectable to undetectable
regimes has been first shown to exist in MP-based inference
models for graphs [6], and gave rise to an extensive body of
literature on theoretical detectability limits and sharp phase
transitions [8, 9]. Here, we extend these classical arguments to
hypergraphs, and find relevant differences when higher-order
interactions are considered.

In line with previous work, we restrict our study to the
case where groups have constant expected degrees. In fact, in
settings where such an assumption does not hold, it is possible
to obtain good classification by simply clustering nodes based
on their degrees [6]. Formally, we assume

K∑
a=1

cabnb = c , (15)

for some fixed constant c. Notice that Eq. (15) does not immedi-
ately imply a constant degree for the groups, as in hypergraphs
the expected degree is defined differently than the left-hand-
side of the equation above. Nevertheless, in Appendix F 1
we prove that imposing the condition in Eq. (15) does indeed
imply a constant average degree. More precisely,

Proposition 1. Assuming Eq. (15), the following holds:

• all the groups have the same expected degree;

• the fixed points for the messages read

qi→e(ti) = nti ∀e ∈ E, i ∈ e (16)

q̂e→i(ti) =
1

K
∀e ∈ E, i ∈ e . (17)

We want to study the propagation of perturbations around
the fixed points of Eqs. (16)–(17). We assume that the factor
graph is locally tree-like, i.e., neighborhoods of nodes are
approximately trees. We provide a visualization of this in
Fig. 2. Classically, it has been proven that for sparse graphs
almost all nodes have local tree-like structures up to distances
of orderO(logN) [34]. We are not aware of similar statements
for hypergraphs. While our empirical results prove that these
assumptions are reasonable and approximately valid, we leave
the formalization of such an argument for future work.

Referring to Fig. 2(b), one can see that between every leaf
and the root, there is a single connecting path. Thus, pertur-
bations on the leaves propagate through a tree to the root, and
transmit via the following transition matrix

T̃ ab
r =

∂qir→fr (a)

∂qir+1→fr+1
(b)

, (18)

where ir, fr are respectively the r-th variable node and func-
tion node in the path. In words, this is the dependency of a
message on the message one level below in the path. In Ap-
pendix F 2 we show that, to leading terms in N , the transition
matrix evaluates to

T̃ ab
r =

2na
|fr|(|fr|−1)

(cab
c

− 1
)
. (19)
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FIG. 2: Local tree assumption. (a) The classical local tree assumption for graphs. Here, it is assumed that the neighborhoods of
nodes are approximately trees. (b) The tree assumption for factor graphs. Here, a path from a leaf (light blue) to a root (orange)
consists of steps alternating variable nodes and function nodes. These two representations coincide in the case of graphs. (c) The
perturbations propagate up the tree via the messages. In graphs (a), they reach the root passing from nodes ir+1 to ir (green). In
hypergraph-induced factor graphs, perturbations spread from a node ir+1, at depth r + 1, to its neighboring function nodes fr+1

(red), and up to node ir at depth r (blue) in an alternating fashion.

A related expression was previously obtained for the transition
matrix on graphs is T ab = na (cab/c− 1) [6]. Hence, we can
compactly write T̃ ab

i = [2/(|fr|(|fr|−1))]T ab. This connec-
tion highlights an important difference between the two cases:
hyperedges induce a higher-order prefactor with a “dispersion”
effect. The larger the hyperedge, the lower is the magnitude of
this transition. Instead, if the hyperedge is a pair, this prefactor
reduces to one, and we recover the result on graphs. A pertur-
bation ϵkd

td
of a leaf node kd influences the perturbation ϵk0

t0 on
the root t0 by

ϵk0
t0 =

∑
{tr}r=1,...,d

(
d−1∏
r=0

T̃
trtr+1

i

)
ϵkd
td
. (20)

We can also express this connection in matrix form as

ϵk0 =

(
d−1∏
r=0

2

|fr|(|fr|−1)

)
T dϵkd , (21)

where T is the matrix with entries T ab (in Eq. (21) raised to
the power of d), and ϵkd the array of ϵkd

td
values. Now, similarly

to Decelle et al. [6], we consider paths of length d→ +∞. In
such a case, the r-dependent prefactor in Eq. (21) converges
almost surely to

µ = exp

(
E
[
d log

2

|f |(|f |−1)

])
, (22)

where the expectation is taken with respect to randomly drawn
hyperedges f ∈ E. If λ is the leading eigenvector of T , then

ϵk0 ≈ µλdϵkd . (23)

Aggregating over the leaves, and since the perturbations have
an expected value of zero, we obtain variance:

⟨(ϵk0
t0 )

2⟩ ≈
〈[⟨d⟩(F−1)]d∑

k=1

µλdϵkt

2〉
(24)

i.i.d.
= (⟨d⟩(F − 1))dµ2 λ2d⟨(ϵkt )2⟩ , (25)

where ⟨d⟩ is the average node degree and F the average hy-
peredge size. The expression in Eq. (25) yields the following
stability criterion, the key result of our derivations:

⟨d⟩(F − 1)

(
expE

[
log

2

|f |(|f |−1)

])2

λ2 < 1 . (26)

This generalizes the seminal result cλ2 < 1 of Decelle et al.
[6] to hypergraphs. When Eq. (26) holds, the influence of
the leaves to the root decays when propagating up the tree
in Fig. 2(b). Conversely, if Eq. (26) is not satisfied, it grows
exponentially.

To obtain more interpretable bounds, we focus on a bench-
mark scenario where the affinity matrix contains all equal on-
and off-diagonal elements, i.e., caa = cin for all a ∈ [K] and
cab = cout for all a ̸= b. In this case, condition Eq. (15) be-
comes cin + (K − 1)cout = Kc, the leading eigenvalue of T
is λ = (cin − cout)/Kc, and the stability condition in Eq. (26)
reads

|cin − cout|>
Kc√

⟨d⟩(F − 1)
exp

(
−E

[
log

2

|f |(|f |−1)

])
.

(27)
When hypergraphs only contain dyadic interactions, Eq. (27)
reduces to the bound |cin − cout|> K

√
c previously derived

for graphs [6], also known as Kesten-Stigum bound [46, 47].

B. Phase transition in hypergraphs

We test the bound obtained in Eq. (27) by running MP on
synthetic hypergraphs generated via the sampling algorithm
of Sec. III D. In our experiments, we fix K = 4 and sam-
ple hypergraphs with N = 104 nodes. We also fix c = 10
and change the ratio cout/cin. In this setup, for graphs, one
expects a continuous phase transition between two regimes
where the system is undetectable and detectable [6]. In the
former, where the inequality yielded by the Kesten-Stigum
bound does not hold, and the graph does not carry sufficient
information about the community assignments, community
detection is impossible. In the latter, communities can be ef-
ficiently recovered by MP. In Fig. 3 we plot the overlap =
(
∑

i q
⋆
i /N −maxa na)/(1−maxa na) with q⋆i ≡ qi(a

⋆
i ) and
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FIG. 3: Phase transition. The overlap between ground truth
and inferred communities varies for different cout/cin ratios.
The values attained are positive on the detectable region (left
of the dotted theoretical bounds) and continuously drop to
zero as the phase transition boundary approaches. Values for
hyperedges up to size D = 50 (orange) always yield higher
overlap compared to D = 2 (light blue). Shaded areas are
standard deviations over 5 random initializations of MP.

a⋆i = argmaxb qi(b), against cout/cin. Our results are in
agreement with the theoretical predictions: the overlap is low
in the undetectable region, high in the detectable region, and
we observe a continuous phase transition at the Kesten-Stigum
bound for graphs, i.e., when D = 2.

We expect the presence of higher-order interactions to im-
prove detectability, as it yields greater overlap for any cout/cin
and it shifts the theoretical transition to larger values. We
empirically validate this prediction by evaluating Eq. (27) for
hyperedges up to size D = 50 and performing MP inference
in Fig. 3. Diverging convergence times for larger cout/cin,
i.e., when the free energy landscape gets progressively rugged,
further demonstrate this behavior, as shown in Appendix F 3.

C. The impact of higher-order interactions on detectability

As mentioned above, the transition matrix in Eq. (19) re-
duces to the classic T ab [6] when only dyadic interactions are
present. In fact, the additional prefactor 2/(|fr|(|fr|−1)) is
equal to one for 2-dimensional hyperedges. However, when
hyperedges of higher sizes are present, this prefactor is strictly
smaller than one. This dampens the perturbations ϵk0 when
they propagate up the tree in Fig. 2(b). It is unclear whether
this higher-order effect aids or hurts detectability, as it could
prevent signal from being propagated, but also noise from
accumulating at the root.

With this in mind, we investigate the impact of higher-oder
interactions on detectability by disentangling the effect that K,
c and, most importantly, D have on the detectability bound set
by Eq. (26). To this end, we rewrite Eq. (27) as∣∣∣∣ρin − 1

Kc

∣∣∣∣ > Φ(K, c,D) . (28)

Here, we utilized cin/Kc = ρin ∈ [0, 1], a degree-independent
rescaling of cin, where we normalize by its maximum possible

value Kc, as per Eq. (15). The term Φ(K, c,D) is the value of
the theoretical bound at the r.h.s. of Eq. (27), normalized by
Kc as well. This way, we get the decomposition Φ(K, c,D) =
α(K)β(c)γ(D) as a product of three independent terms:

α(K) =
K − 1

K
(29)

β(c) =
1√
c

(30)

γ(D) =
exp

(
−E

[
log 2

|f |(|f |−1)

])
√
C(F − 1)/2

, (31)

where C =
∑D

d=2

(
N−2
d−2

)
d
κd

In our experiments we choose of κd =
(
N−2
d−2

)d(d−1)
2 , which

conveniently returns C = 2HD−1 (see Appendix A), with
HD−1 being the (D − 1)-th harmonic number. However, our
theory holds true for any κd yielding sparse hypergraphs.

The classic effect of α(K) and β(c) is summarized in
Fig. 4(a), where the maximum hyperedges size is fixed to
D = 2, hence γ(D) = 1. Here, we observe that the unde-
tectability gap reduces when increasing c. Graphs with higher
average degrees are more detectable even when there is a larger
inter-community mixing. The effect of largerK is that of skew-
ing the detectability phase transition. This is because edges
contributing to cout are spread over K − 1 communities, while
those accounted for cin concentrate in a single one. Intuitively,
increasing K allows to have more in-out edges, and detectabil-
ity is still possible because of the dominating cin term. The
limit value ρin = 1/K constitutes the perfect mixing case
cin = cout = c, where detectability is unfeasible for any K
and finite degree c. One should notice that, while the bounds
drawn in Fig. 4 hold theoretically, for large K it may be expo-
nentially hard to retrieve communities even in the detectable
region [6, 48].

The higher-order effects on detectability are shown in
Fig. 4(b)-(c). The presence of hyperedges with D > 2 en-
ters in Eq. (31) as the product of two separate contributions,
γ(D) = γ1(D)γ2(D), where

γ1(D) = exp

(
−E

[
log

2

(|f |(|f |−1))

])
(32)

γ2(D) =
1√

C(F − 1)/2
. (33)

These two terms have contrasting effects that multiply to obtain
the overall trend of γ(D): γ1(D) is monotonically increasing
while γ2(D) is monotonically decreasing. If we were to con-
sider only the “dispersion” contribution γ1, we would enlarge
the detectability gap by increasing Φ. However, the γ2 term
factors in the increasing number of interactions observed with
larger hyperedges. The result is the overall higher-order contri-
bution to detectability γ(D) = γ1(D)γ2(D), where the value
of γ2 dominates over γ1, giving rise to the non-trivial, mono-
tonically decreasing, profile of Fig. 4(b).

The overall effect of higher-order terms is illustrated by
plotting the relative difference ∆Φ(K, c,D) = (Φ(K, c,D)−
Φ(K, c, 2))/Φ(K, c, 2) for a range of c and D values, with
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K

K

K
FIG. 4: Theoretical phase transition. Due to the decomposi-
tion of our bound in Eqs. (29)–(31) it is possible to separately
describe the effects of K, c and D on the predicted phase
transition. (a) Detectability bounds for networks (D = 2).
Increasing c yields a broader range of detectable configura-
tions (colored areas) for ρin. The number of communities
skews detectability: while for K = 2 communities can be
detected in extremely disassortative regimes (ρin close to zero),
when more communities are present, only assortative networks
are detectable. (b) Effect of the maximum hyperedge size
D. The term γ(D) in Eq. (31) can be split into the product
γ1(D)γ2(D), as defined in Eqs. (32)–(33). The non-trivial de-
crease of γ(D) results from the interplay of γ1(D) and γ2(D),
having opposite monotonicity. (c) The percentage decrease
∆Φ(K, c,D) = (Φ(K, c,D) − Φ(K, c, 2))/Φ(K, c, 2) in de-
tectability for different c,D values shows that higher-order
interactions steadily improve detection, especially in sparse
regimes.

K = 4, as shown in Fig. 4(c). We observe how higher-order
interactions lead to better detectability for all c, especially in
sparse regimes, where c is small and pairwise information is
not sufficient for the recovery of the communities.

D. Entropy and higher-order information

Hypergraphs are often compared against their clique decom-
position, i.e., the graph obtained by projecting all hyperedges
onto their pairwise connections, as a baseline network structure
[49–51].

The clique decomposition yields highly dense graphs. For
this reason, most theoretical results on sparse graphs are

not directly applicable, algorithmic implementations become
heavier—many times unfeasible—and storage in memory is
suboptimal. Previous work also showed that algorithms de-
veloped for hypergraphs tend to work better in many practical
scenarios [16]. Intuitively, hypergraphs “are more informative”
than graphs [52], as there exists only one clique decomposition
induced by a given hypergraph, but possibly more hypergraphs
corresponding to a given clique decomposition. Here we give a
theoretical basis to this common intuition and find that, within
our framework, we can quantify the extra information carried
by higher-order interactions.

For a given hypergraph H = (V,E), edge (i, j) ∈ V 2 and
hyperedge e ∈ E, we define the probability distribution

pH({i, j}, e) =


1

E

2

|e|(|e|−1)
if i, j ∈ e

0 otherwise .
(34)

This distribution represents the joint probability of drawing a
hyperedge uniformly at random among the possible E in the
hypergraph and a dyadic interaction {i, j} out of the possible(|e|
2

)
within the hyperedge e. From Eq. (34) we can derive the

following marginal distributions:

pE(e) =
1

E
(35)

pC({i, j}) =
1

E

∑
e∈E:i,j∈e

2

|e|(|e|−1)
, (36)

for all e ∈ E and pairs of nodes i ̸= j. The distribution pE
is a uniform random draw of hyperedges. The distribution pC
represents the probability of drawing a weighted interaction
{i, j} in the clique decomposition of H .

With Eqs. (34)–(36) at hand, it is possible to rewrite γ1(D)
in Eq. (32) as

log γ1(D) = H({i, j} | f) , (37)

where H(· | ·) is the conditional entropy. This entropy is min-
imized when pC({i, j}) is very different than pH({i, j}|f), i.e.,
when conditioning a pair {i, j} to be in f brings additional
information with respect to the interaction {i, j} alone. This
happens when {i, j} appears in several hyperedges and it is
difficult to reconstruct the hypergraph from its clique decom-
position. As lower values of γ1 imply easier recovery, Eq. (37)
suggests that recovery is favored in hypergraphs where hyper-
edges overlap substantially and that cannot be easily distin-
guished from their clique decomposition.

We obtain a similar result by rewriting Eq. (37) as

γ1(D) =
expH(pH)

expH(pE)
=

PP(pH)

PP(pE)
, (38)

which is the ratio of two exponentiated entropies. In infor-
mation theory, PP is referred to as perplexity [53], and it is
an effective measure of the number of possible outcomes in
a probability distribution [54]. Once we fix the number of
hyperedges E (and therefore PP(pE)), the number of effective
outcomes is given by the number of likely drawn {i, j} pairs.
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This number is minimized when there is high overlap between
hyperedges, thus confirming the interpretation of Eq. (37).

Finally, we set a different focus by rewriting γ1 as

log γ1(D) = H(pC)−KL (pH || pC ⊗ pE) , (39)

where KL is the Kullback-Leibler divergence and ⊗ the prod-
uct probability distribution. Here we pose the question: given
a fixed clique decomposition and number of hyperedges,
what is the hypergraph attaining the highest detectability?
From the equation, such hypergraph is that with the high-
est KL (pH || pC ⊗ pE) = I({i, j}, f). In this case, the KL-
divergence between a joint distribution and its marginals, also
called mutual information I [55] of the two random variables,
describes the information shared between pairwise interactions
and single hyperedges. Hypergraphs with high KL-divergence,
i.e, high information about a given {i, j} in a single hyperedge
f , will yield better detectability. In other words, it is preferable
to choose hypergraphs that, while still producing the observed
clique decomposition (thus achieving low entropy H(pH)),
have largely overlapping hyperedges. The results discussed in
this section provides a theoretically guidance for the construc-
tion of hypergraphs that explain an observed graph made of
only pairwise interactions [56], a problem relevant in datasets
where higher-oder interactions are not explicitly tracked.

V. EXPERIMENTS ON REAL DATA

Our model leads to a natural algorithmic implementation
to learn communities in hypergraphs. In fact, alternating MP
and EM rounds, our algorithm outputs marginal probabilities
qi(ti) for a node i to belong to a community ti, as well as the
community ratios n and the affinity matrix p. We illustrate an
application of this procedure on a dataset of interactions be-
tween high school students (High School) [57]. Here, nodes are
students and hyperedges represent whether a group of students
was observed in close proximity, as recorded by wearable de-
vices. The hypergraph containsN = 327 nodes andE = 7818
hyperedges. In Fig. 5(a) we show the communities inferred
on the dataset where only hyperedges up to size D = 2, 3, 4
are kept. We observe a clear progression in how the nodes are
gradually allocated into different groups when higher-order
interactions are progressively taken into account. This suggests
that interactions beyond pairs carry information that would get
lost if only edges were to be observed.

To get a qualitative interpretation, we compare the commu-
nities inferred with the nine classes attended by the students,
an attribute available with the dataset. We illustrate the hyper-
graph of student interactions, coloring each node according
to its class, in Fig. 5(b). Previous studies have shown that
in this dataset a number of interactions happen with stronger
prevalence within students of the same class [57]. In Fig. 5(c),
we compare the communities inferred with different maximum
hyperedge size D with the classes, and observe that there is
a stronger alignment between them when larger hyperedges
are utilized for inference. In Fig. 5(d) we show, at D = 2, 3, 4,
the Normalized Mutual Information (NMI) between inferred
communities and class attributes,the AUC with respect to the

full dataset, and the fraction ρD of hyperedges with size equal
to D. In addition, our algorithm detects connection patterns
that were previously observed between the different student
classes as captured by the affinity matrix p, see Appendix G 2
for details.

A feature that sets MP apart from other inference meth-
ods is the possibility to approximately compute the evidence
Z = p(A | p, n) of the whole dataset, or, equivalently, the free
energy F = − logZ. In Appendix G we discuss how to make
the free energy computations feasible by exploiting classical
cavity arguments, as well as a dynamic program similar to that
employed for MP. We present the results of these estimates on
the High School dataset in Fig. 5(e). Here we take the values of
n and p inferred by cutting the dataset at maximum hyperedge
sizes D = 2, 3, 4. Then, we compute the free energy on the
full dataset (D = 5) in the simplex of n, p parameters outlined
by the three vertices. We notice that interactions of size D = 5
seem to be less informative and lead to suboptimal inference,
see Appendix G 3. Similarly to what observed on graphs [6],
the energy landscape appears rugged and complex. EM con-
verges to solutions that are local attraction points, i.e., valleys
of low-energy configurations. Moreover, the free energy of the
p, n parameters inferred with only pairwise interactions (i.e.,
D = 2, lower-right) is higher than that inferred for D = 3
(upper-left), which is in turn higher that the one of D = 4
(bottom-left).

VI. CONCLUSION

We developed a probabilistic generative model and a
message-passing-based inference procedure that lead to sev-
eral results advancing community detection on hypergraphs. In
particular we obtained closed-form bounds for the detectability
of community configurations, extending the seminal results
of Decelle et al. [6] to higher-order interactions. Experimen-
tal validation of such bounds shows the emergence of a de-
tectability phase transition when spanning from disassortative
to assortative community structures. With these theoretical
bounds at hand, we investigate the relationship between hyper-
graphs and graphs from an information-theoretical perspective.
Characterizing the entropy and perplexity of pairs of nodes in
hyperedges, we find that hypergraphs with many overlapping
hyperedges are easier to detect. Beside these theoretical ad-
vancements, we develop two relevant algorithmic ones. First,
we derive an efficient and scalable Message-Massing algorithm
to learn communities and model parameters. Second, we pro-
pose an exact and efficient sampling routine that generates
synthetic data with desired community structure according to
our probabilistic model in order of seconds. Both of these
implementations are released open source [42].

The mathematical tools we propose here to obtain our re-
sults are valid for standard hypergraphs. We can foresee that
they could be generalized to dynamic hypergraphs where inter-
actions change in time, using intuitions derived for dynamic
graphs [10]. Similarly, it would be interesting to see how de-
tectability bounds change when accounting for node attributes,
as results in networks have shown that adding extra informa-
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FIG. 5: . We infer the communities via MP and EM on the High School dataset. In all cases, we run inference with K = 10
communities. (a) Inferred communities on the High School dataset, only utilizing hyperedges up to a maximum size D. Taking
into account higher-order information, up to D = 4, results in more granular partitions. (b) Graphical representation of the
students’ partition into classes. We draw only hyperedges of size D. (c) We compare the inferred partitions with the “attended
class” covariate of the nodes, i.e., the classes students participate in. We comment further on this comparison in Appendix G 2.
(d) A quantitative measurement complementing that of panel (b): the Normalized Mutual Information (NMI) between inferred
communities and attended classes, the AUC on the full dataset, as well as the ratio ρD of hyperedges of size equal to D. (e)
Free energy landscape. We consider the parameters (p2, n2), (p3, n3) and (p4, n4) inferred from the dataset with, respectively,
D = 2, 3, 4. With these, we build the simplex of convex combinations p =

∑
i∈{2,3,4} λipi, where

∑
i∈{2,3,4} λi = 1 and

0 ≤ λi ≤ 1 (similarly for n). For every point in the simplex, we compute the free energy on the full dataset, i.e., with D = 5.
More details on these computations are provided in Appendix G 1.

tion can boost community detection [58–60]. Finally, from
an empirical perspective, it would be interesting to see how
our theoretical insights in terms of entropy of hypergraphs and
clique expansion match measures that relate hypergraphs to
simplicial complexes [61].
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Appendix A: Expected degree and choice of κd

As we commented in Sec. II, the choice of the normalizing constant κd, for d = 2, . . . , D, controls the Bernoulli probabilities
for all hyperedges e ∈ Ω via

P(e | p, t) = πe
κ|e|

=

∑
i<j∈e ptitj

κ|e|
.

Our theoretical analysis and results hold for general choices of κd, as long as these respect the following conditions. First, for any
choice of a symmetric 0 ≤ pab ≤ 1, we need valid probabilities 0 ≤ πe/κ|e| ≤ 1. This implies that, necessarily:

κd ≥ d(d− 1)

2
∀d = 2, . . . , D . (A1)
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Second, we want the ensemble to consist of sparse hypergraphs, in expectation. A good proxy for such a requirement is the
average degree, which we can compute explicitly:

⟨d⟩ = 1

N

∑
i∈V

∑
e∈Ω:i∈e

P(e | p, t)

=
1

N

∑
e∈Ω

∑
i∈e

P(e | p, t)

=
1

N

∑
e∈Ω

|e|P(e | p, t)

=
1

N

∑
e∈Ω

|e|
κ|e|

∑
i<j∈e

ptitj

=
C

N

∑
i<j∈V

ptitj

≈ C

N

∑
a≤b∈[K]

pab(Nna)(Nnb)

1 + δab

=
C

2

∑
a,b∈[K]

cabnanb , (A2)

where

C =

D∑
d=2

(
N − 2

d− 2

)
d

κd
.

We assume cab = O(1), i.e. to be in a sparse regime. Thus, the expected degree’s scale is governed by C and, in turn, by the
choice of κd, as

⟨d⟩ = O(C) .

Additionally, but not necessarily, we wish our model to extend the classical SBM, which imposes the additional condition
κ2 = 1. There exist many choices of κd obeying the constraints just discussed. A natural one is the minimum value satisfying
Eq. (A1), i.e. κd = d(d− 1)/2. This gives

C =
2

N − 1

D−1∑
d=1

(
N − 1

d

)
that, for D = N , returns ⟨d⟩ = O

(
2N/(N − 1)

)
, which is too high to yield sparse hypergraphs. Notice that, in practice, we

rarely use D = N . However, such considerations are useful to evaluate how different κd values reflect on the properties of the
hypergraphs ensembles of the model.

A more interesting choice is given by

κd =
d(d− 1)

2

(
N − 2

d− 2

)
.

This corresponds to taking the average among the d(d− 1)/2 interactions that yield πe, and
(
N−2
d−2

)
is a normalization: once

observed an interaction between two nodes i, j, the remaining d− 2 are chosen at random. This gives

C = 2

D−1∑
d=1

1

d

= 2HD−1 , (A3)

which is proportional to the (D − 1)-th harmonic number, hence growing more mildly at leading order as C = O(logD). Aside
from having an interpretation in terms of null modeling, the value in Eq. (A3), which we utilize experimentally, was shown to be a
sensible choice in many real-life scenarios [17, 41].
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Appendix B: Message-Passing derivations

MP equations have been developed in the case of general factor graphs, see for example Murphy et al. [35], Section 22.2.3.2.
We consider approximate messages from hyperedges e to nodes i being q̂e→i(ti), and vice versa, qi→e(ti). The messages, for any
e ∈ F , i ∈ ∂e satisfy the general updates

qi→e(ti) ∝ nti
∏

f∈∂i\e

q̂f→i(ti)

q̂e→i(ti) ∝
∑

tj :j∈∂e\i

(
πe
κe

)Ae
(
1− πe

κe

)1−Ae ∏
j∈∂e\i

qj→e(tj) . (B1)

The marginal beliefs are given by

qi(ti) ∝ nti
∏
e∈∂i

q̂e→i(ti) . (B2)

1. Message updates

First, we can distinguish the values of messages for function nodes e such that Ae = 0 or Ae = 1, i.e. if the hyperedge e is
observed or not in the data.

If Ae = 1, i.e. e ∈ E, then

q̂e→i(ti) ∝
∑

tj :j∈∂e\i

πe
κe

∏
j∈∂e\i

qj→e(tj)

∝
∑

tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e(tj) . (B3)

If Ae = 0, then e ∈ Ω \ E. We start by computing

q̂e→i(ti) ∝
∑

tj :j∈∂e\i

(
1− πe

κe

) ∏
j∈∂e\i

qj→e(tj)

=
∑

tj :j∈∂e\i

∏
j∈∂e\i

qj→e(tj)−
∑

tj :j∈∂e\i

πe
κe

∏
j∈∂e\i

qj→e(tj)

= 1−
∑

tj :j∈∂e\i

πe
κe

∏
j∈∂e\i

qj→e(tj)

= 1− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm

κe

∏
j∈∂e\i

qj→e(tj) . (B4)

We indicate with Ẑe→i(ti) the convenient non-normalized rewriting of q̂e→i(ti) in Eq. (B4). Therefore, we find

qi→e(ti) ∝ nti
∏

f∈∂i\e

q̂f→i(ti)

=
nti

q̂e→i(ti)

∏
f∈∂i

q̂f→i(ti) (B5)

∝ nti

Ẑe→i(ti)

∏
f∈∂i

q̂f→i(ti) (B6)

=
qi(ti)

Ẑe→i(ti)
, (B7)
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where from the Eq. (B5) to Eq. (B6) we used Ẑe→i(ti) introduced in Eq. (B4). We evaluate the expression in Eq. (B7) for the
limit N → +∞, which gives the node-to-hyperedge messages for e ∈ Ω \ E as

qi→e(ti) = qi(ti) +O

(
1

N

)
≈ qi(ti) , (B8)

i.e., the nodes approximately (to leading order in O(1/N)) share their marginal belief to hyperedges that are not observed in the
data. Using Eq. (B8), we can also approximate Eq. (B4) as

q̂e→i(ti) ∝ 1− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm

κe

∏
j∈∂e\i

qj→e(tj)

≈ 1− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm

κe

∏
j∈∂e\i

qj(tj) . (B9)

In the assumed sparsity regime, the term of order O(1/N) in Eq. (B9) is close to zero. Since for x ≈ 0 the approximation
1− x ≈ e−x is sufficiently accurate, we write

q̂e→i(ti) ≈ exp

− 1

N

∑
tj :j∈∂e\i

∑
k<m∈e ctktm

κe

∏
j∈∂e\i

qj(tj)

 . (B10)

We can put the hyperedge-to-node updates together using the two results in Eq. (B3) and in Eq. (B10). Specifically, we derive
the following expression for the message qi→e(ti), where e ∈ E:

qi→e(ti) ∝ nti
∏
f∈Ω:

f∈∂i\e

q̂f→i(ti)

= nti
∏
f∈E:
f∈∂i\e

q̂f→i(ti)
∏

f∈Ω\E
f∈∂i

q̂f→i(ti)

≈ nti

 ∏
f∈E:
f∈∂i\e

q̂f→i(ti)


 ∏
f∈Ω\E:
f∈∂i

exp

− 1

N

∑
tj :j∈∂f\i

∑
k<m∈f ctktm

κf

∏
j∈∂f\i

qj(tj)


 (B11)

= nti

 ∏
f∈E:
f∈∂i\e

q̂f→i(ti)

 exp

− 1

N

∑
f∈Ω\E:
f∈∂i

∑
tj :j∈∂f\i

∑
k<m∈f ctktm

κf

∏
j∈∂f\i

qj(tj)



≈ nti

 ∏
f∈E:
f∈∂i\e

q̂f→i(ti)

 exp

− 1

N

∑
f∈Ω:
f∈∂i

∑
tj :j∈∂f\i

∑
k<m∈f ctktm

κf

∏
j∈∂f\i

qj(tj)

 (B12)

= nti

 ∏
f∈E:
f∈∂i\e

q̂f→i(ti)

 exp(−hi(ti)) . (B13)

In Eq. (B11), we used the approximation introduced in Eq. (B10). In Eq. (B12) we passed from summing over Ω \ E to Ω. This
approximation is sensible as long as the expected degree of the nodes grows at most as N , which is satisfied in the assumed sparse
regime, as discussed in Appendix A. Finally, in Eq. (B13) we introduced node-dependent external field hi(ti) whose definition
naturally follows from the argument of the exponential in Eq. (B12).
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2. External field updates

We simplify the external field to remove the node dependency of hi(a). The node-dependent external field reads

hi(ti) =
1

N

∑
f∈∂i

1

κf

 ∑
tj :j∈∂f\i

∑
k<m∈f

ctktm
∏

r∈f\i

qr(tr)


=

1

N

∑
f∈∂i

1

κf

 ∑
tj :j∈f\i

∑
m∈f\i

ctitm
∏

r∈f\i

qr(tr)

+ const. (B14)

The sum in parentheses in Eq. (B14) can be simplified as

∑
tj :j∈f\i

 ∑
m∈f\i

ctitm

 ∏
r∈f\i

qr(tr)

 =
∑

tj :j∈f\i

∑
m∈f\i

ctitm ∏
r∈f\i

qr(tr)


=
∑

m∈f\i

∑
tj :j∈f\i

ctitm ∏
r∈f\i

qr(tr)


=
∑

m∈f\i

∑
tm

ctitmqm(tm) . (B15)

Plugging Eq. (B15) into Eq. (B14) we get, ignoring constants,

hi(ti) =
1

N

∑
f∈∂i

1

κf

∑
m∈f\i

∑
tm

ctitmqm(tm)

=
C ′

N

∑
j∈V \i

∑
tj

ctitjqj(tj)

≈ C ′

N

∑
j∈V

∑
tj

ctitjqj(tj) , (B16)

with C ′ =
∑D

d=2

(
N−2
d−2

)
1
κd

and where in Eq. (B16) we included i in the node summation. Since Eq. (B16) does not depend on i,
we define the node-independent external field

h(a) =
C ′

N

∑
j∈V

∑
tj

catjqj(tj) ∀a ∈ [K] .

3. Marginal beliefs updates

Notice, that, in passing from Eq. (B11) to Eq. (B13) and then in Eq. (B17), we have shown that∏
f∈Ω\E
f∈∂i

q̂f→i(ti) ≈ exp(−hi(ti)) ≈ exp(−h(ti)) . (B17)

We use the same argument to treat the general expression of the marginal beliefs in Eq. (B2), yielding

qi(ti) ∝ nti
∏
e∈∂i

q̂e→i(ti)

= nti
∏
e∈E:
e∈∂i

q̂e→i(ti)
∏

e∈Ω\E:
e∈∂i

q̂e→i(ti)

≈ nti
∏
e∈E:
e∈∂i

q̂e→i(ti) exp(−h(ti)) .
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4. Summary: approximate Message-Passing updates

Putting all derivations together, the final MP equations read

Node-to-observed hyperedge: qi→e(ti) ∝ nti

 ∏
f∈E

f∈∂i\e

q̂f→i(ti)

 exp(−h(ti)) ∀e ∈ E, i ∈ e

Observed hyperedge-to-node: q̂e→i(ti) ∝
∑

tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e(tj) ∀e ∈ E, i ∈ e (B18)

External field: h(ti) =
C ′

N

∑
j∈V

∑
tj

ctitjqj(tj) (B19)

Marginals: qi(ti) ∝ nti

∏
f∈E
f∈∂i

q̂f→i(ti)

 exp(−h(ti)) .

Notice that the MP updates cannot be naively implemented as presented. In fact, the update in Eq. (B18) for q̂e→i(ti) have
cost O(K |e|−1), which does not scale with the hyperedge size. In Appendix D we present a dynamic programming approach to
perform this computation exactly with cost O(K2|e|), and comment on further algorithmic details to implement the MP updates
in practice.

Appendix C: Expectation-Maximization inference

Updates of the community priors n. We take the derivative of the log-likelihood in Eq. (4). By imposing the constraint∑K
a=1 na = 1, we obtain the update in Eq. (13).

Updates of the affinity matrix p. We show here the updates in terms of c. These easily translate to those in terms of the
affinity matrix p as the expression we derive below in Eq. (C6) is invariant with respect to the substitution c = Np. Let
xe =

∑
i<j∈e ctitj/Nκe. Then, ignoring additive constants, the log-likelihood reads

L =
∑
e∈E

log

 ∑
i<j∈e

ctitj

+
∑

e∈Ω\E

log(1− xe)

≈
∑
e∈E

log

 ∑
i<j∈e

ctitj

−
∑

e∈Ω\E

xe (C1)

=
∑
e∈E

log

 ∑
i<j∈e

ctitj

−
∑

e∈Ω\E

∑
i<j∈e ctitj

Nκe

where Eq. (C1) is the linearization of log(1 − x) ≈ x around x = 0, which is valid at leading order O(1/N). We now take a
variational approach to find a lower bound L̃ of the log-likelihood:

L ≈
∑
e∈E

log

 ∑
i<j∈e

ctitj

−
∑

e∈Ω\E

∑
i<j∈e ctitj

Nκe

≥
∑
e∈E

∑
i<j∈e

ρeij log

(
ctitj
ρeij

)
−
∑

e∈Ω\E

∑
i<j∈e ctitj

Nκe
(C2)

=
∑
e∈E

∑
i<j∈e

ρeij log ctitj −
∑

e∈Ω\E

∑
i<j∈e ctitj

Nκe
+ const.

= L̃(c) + const. ,
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which is valid for any distribution ρeij such that
∑

i<j∈e ρ
e
ij = 1. In Eq. (C2), we utilized Jensen’s inequality. The lower bound is

exact when

ρeij =
ctitj∑

i<j∈e ctitj
=
ctitj
Nπe

. (C3)

We compute the derivative of the variational lower bound and approximate to leading terms in N :

∂L̃
∂cab

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδtiaδtjb −
1

N

∑
e∈Ω\E

1

κe

∑
i<j∈e

δtiaδtjb

≈ 1

cab

∑
e∈E

∑
i<j∈e

ρeijδtiaδtjb −
1

N

∑
e∈Ω

1

κe

∑
i<j∈e

δtiaδtjb (C4)

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδtiaδtjb −
C ′

N

∑
i<j∈V

δtiaδtjb

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδtiaδtjb −
C ′

2N
(NaNb − δabNa)

=
1

cab

∑
e∈E

∑
i<j∈e

ρeijδtiaδtjb −
C ′

2
(Nnanb − δabna) . (C5)

where C ′ =
∑D

d=2

(
N−2
d−2

)
1
κd

. Notice that the approximations in Eq. (C4) and Eq. (C5) hold valid only when considering cab in
the expressions, as by assumption c = O(1). Now, by setting Eq. (C5) equal to zero, and substituting ρeij from Eq. (C3), we
obtain the update

c
(t+1)
ab = c

(t)
ab

2
∑

e∈E #e
ab/πe

N C ′ (Nnanb − δabna)
, (C6)

where #e
ab =

∑
i<j∈e δtiaδtjb.

Appendix D: Algorithmic and computational details

1. Dynamic programming for MP

In this section, we explain how the MP updates for the q̂e→i(ti) messages can be performed efficiently. In log-space, the
messages can be compactly written as

log q̂e→i(ti) = log
∑

tj :j∈∂e\i

πe
∏

j∈e\i

qj→e(tj) + const.

= ψ(e, i, ti) + const. . (D1)

Below, we focus on finding efficient updates for ψ as defined in Eq. (D1), which should be exponentiated and properly normalized
to find the original messages q̂e→i(ti). For this, we introduce an auxiliary quantity. For any subset g ⊆ f of nodes in f , where
i ∈ g, we define

η(g, i, ti) = log

 ∑
tj :j∈g\i

 ∑
l<m∈g

ptltm

 ∏
j∈g\i

qj→f (tj)

 .
Hence η(f, i, ti) = ψ(f, i, ti) + const.. This quantity is useful in that it allows to obtain an efficient recursion formula for ψ, by
computing the η values starting from subsets g containing two nodes.

Without loss of generality, consider f = {1, . . . ,m− 1} and i = 1. Consider g = {1, . . . , n− 1} for some n ≤ m. We want
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to compute η for the set {1, . . . n}. Its exponential is given by:

exp (η({1, . . . , n}, 1, t1)) =
∑
tn

∑
t2

∑
t3

. . .
∑
tn−1

(
pt1t2 + . . .+ ptn−2tn−1

+ pt1tn + pt2tn + . . .+ ptn−1tn

)
× (q2→f (t2) . . . qn−1→f (tn−1)qn→f (tn))

=
∑
tn

qn→f (tn)

(∑
t2

∑
t3

. . .
∑
tn−1

(pt1t2 + . . .+ ptn−2tn−1
)(q2→f (t2) . . . qn−1→f (tn−1))

+
∑
t2

∑
t3

. . .
∑
tn−1

pt1tn(q2→f (t2) . . . qn−1→f (tn−1))

+
∑
t2

∑
t3

. . .
∑
tn−1

(pt2tn + . . .+ ptn−1tn)(q2→f (t2) . . . qn−1→f (tn−1))

)

=
∑
tn

qn→f (tn)

(
exp(η({1, . . . , n− 1}, 1, t1))

+ pt1tn

+
∑
t2

pt2tnq2→f (t2) + . . .+
∑
tn−1

ptn−1tnqn−1→f (tn−1)

)
= exp(η({1, . . . , n− 1}, 1, t1))

+
∑
tn

qn→f (tn)

(
pt1tn +

∑
t2

pt2tnq2→f (t2) + . . .+
∑
tn−1

ptn−1tnqn−1→f (tn−1)

)
.

(D2)

The recursion in Eq. (D2) allows to compute the value of η({1, . . . , n}, 1, t1) from η({1, . . . , n− 1}, 1, t1) in time O((n−
2)K2). However, we can further reduce the cost. For any a ∈ [K], define

sn(a) =
∑
t2

pt2aq2→f (t2) + . . .+
∑
tn−1

ptn−1aqn−1→f (tn−1) .

Substituting the definition of sn(a) in Eq. (D2), we obtain the final two-step dynamic update:

sn(a) = sn−1(a) +
∑
tn−1

ptn−1aqn−1→f (tn−1) (D3)

exp (η({1, . . . , n}, 1, t1)) = exp(η({1, . . . , n− 1}, 1, t1))
+
∑
tn

qn→f (tn) (pt1tn + sn(tn)) . (D4)

This yields a cost of O(K) per recursion, and a total cost of O(K |f |) to compute the final ψ(f, 1, t1). In practice, for any e, i
pair, we compute ψ(e, i, ti) for all values ti ∈ [K], which yields a total cost of O(K2 |f |).

2. Implementation details

In our implementation of the MP and EM routines, we take some additional steps to ensure convergence to non-trivial local
optima of the free energy landscape.

The initialization of the messages is performed taking into account the circular relationships in Eqs. (9)–(12). We perform
them as follows: (i) randomly initialize the messages qi→e(ti). For every i, e pair, the messages are drawn from a K-dimensional
Dirichlet distribution. (ii) Similarly, randomly initialize the marginal beliefs qi(ti). (iii) We infer all the other quantities from the
initialized qi→e(ti) and qi(ti). In fact, up to constants

q̂e→i(ti) =
qi(ti)

qi→e(ti)
.

All values are then normalized to have unitary sum. (iv) Finally, the external field is entirely determined by the marginals, as per
Eq. (12).
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We check for convergence of the MP and EM inference routines by evaluating the absolute difference between parameters in
consecutive steps. We present complete pseudocodes of the two routines in Algorithm 1 and Algorithm 2.

Algorithm 1 Inferring communities (MP)
Inputs: convergence threshold ϵmp

maximum iterations itermp

prior n, rescaled affinity c

Randomly initialize all qi→e(ti), q̂e→i(ti), qi(ti), h(ti)

for step = 1, . . . , itermp do
// Perform updates
for all e ∈ E, i ∈ e, ti ∈ [K] do

update messages qi→e(ti) ▷ Eq. (9)
end for
for all e ∈ E, i ∈ e, ti ∈ [K] do

update messages q̂e→i(ti) ▷ Eq. (10)
end for
for all e ∈ E, i ∈ e, ti ∈ [K] do

qoldi (ti)← qi(ti)
update marginals qi(ti) ▷ Eq. (11)

end for
for ti ∈ [K] do

update external field h(ti) ▷ Eq. (12)
end for

// Check for convergence
∆ =

∑N
i=1

∑K
ti=1|q

old
i (ti)− qi(ti)|

if ∆ < ϵmp then
break

end if
end for

Algorithm 2 Inferring model parameters (EM)
Inputs: convergence threshold ϵem

maximum iterations iterem

Randomly initialize c, n

for step = 1, . . . , iterem do
// Perform updates
Perform Message-Passing inference ▷ Algorithm 1
nold ← n
update n ▷ Eq. (13)
cold ← c
update c ▷ Eq. (14)

// Check for convergence
∆ =

∑K
a=1|na − nold

a |+
∑K

a,b=1|cab − coldab |
if ∆ < ϵem then

break
end if

end for

While Algorithm 1 is presented as a completely parallel implementation of the MP equations Eqs. (9)–(12), in practice we
proceed in batches. In fact, we find that applying completely parallel updates, i.e. applying Eq. (9) for all i, e pairs, successively
Eq. (10) for all i, e pairs, and then Eq. (11) for all nodes i ∈ V , results in fast convergence to degenerate fixed-points where all
nodes are assigned to the same community. For this reason, we apply dropout. Given a fraction α ∈ (0, 1], we select a random
fraction α of all possible i, e pairs, and apply the update in Eq. (9) only for the selected pairs. We perform a new random draw,
and update according to Eq. (10), and similarly for Eq. (11). Finally, we update the external field in Eq. (12). Empirically, we find
that a value of α = 0.25 works for synthetic data, where inference is simpler. Values below work as well. For real data we find
that substantially lowering α yields more stable inference. On real data, where we alternate MP and EM, and learning is less
stable, we utilize α = 0.01. In practice, we also set a patience parameter, and only stop MP once a given number of iterations in a
row falls below the threshold ϵmp in Algorithm 1. For real datasets, we set the patience to 50 consecutive steps, and the maximum
number of iterations itermp = 2000.

Appendix E: Sampling from the generative model

1. The algorithm

In the following, we describe an exact sampling procedure derived from our probabilistic model. The key observation to obtain
an efficient algorithm is that the hyperedge probabilities do not depend on the nodes they contain, but only on their community
assignments, as implied by Eq. (3).

For a hyperedge e and community a ∈ [K], we define the quantity

#e
a =

∑
i∈e

δtia ,
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which is the count of nodes in e that belong to community a. Crucially, the hyperedge probability depends only on these counts:

πe =
∑

a<b∈[K]

#e
a #

e
b pab +

∑
a∈[K]

#e
a(#

e
a − 1)

2
paa . (E1)

Hence, all hyperedges with different nodes, but same counts #e
1, . . . ,#

e
K , have equal probability. With this in mind, we sample

hypergraphs following these steps.

1. Iterate over the combinations.
For hyperedge size d = 2, we can sample all the N(N − 1)/2 edges directly. Otherwise, iterate the following procedure
for every other hyperedge size d = 3, . . . , D and vectors # = (#1, . . . ,#K) of community counts (independent of e to
highlight that same counts yield identical Eq. (E1)) satisfying

∑K
a=1 #a = d.

2. Compute the probability.
For a given count vector #, the resulting hyperedge probability π# is given in Eq. (E1). Also notice that there are
N# =

(
N1

#1

)
· . . . ·

(
NK

#K

)
possible hyperedges satisfying the count #, since we can choose #1 nodes from the N1 nodes in

community 1, #2 out of N2, and so on.

3. Sample the number of hyperedges.
The key idea is not to sample the individual hyperedges, but the number of observed hyperedges. Since the individual
hyperedges are independent Bernoulli variables with same probability, their sum X follows a binomial distribution:

X ∼ Binom
(
N#,

π#
κd

)
(E2)

with probability π# fixed, determined by #, and number of realizationsN#. Sampling directly from Eq. (E2) is numerically
challenging for large N# and κd, hence we adopt a Gaussian approximation for the binomial [62]. Similarly, we find a
Poisson approximation to be more stable for large N# and small π#/κd [63]. We also adopt a Ramanujan approximation
for large log-factorials appearing during the calculations [64]. This substantially speeds up sampling, while being extremely
precise.

4. Sample the final hyperedges.
Given the count X of hyperedges, sampled from Eq. (E2), we can sample the hyperedges. This operation is performed
by independently sampling X times #1 nodes from community 1, #2 from community 2, and so on. As an important
point, notice that this procedure might yield repeated hyperedges, which are not allowed. In sparse regimes, this event
has low probability [65]. As a sensible approximation, one can simply proceed by deleting repetitions, or resample single
hyperedges until the desired number X of distinct realizations is reached. In our experiments, we choose the former option.
Our code implementation [42] has both choices available for practitioners.

2. Computational complexity

For a fixed hyperedge size d, there are two parts to the computational cost: iterating through the counts #, and sampling the
hyperedges. The number of counts is fixed and given by Kd/d!, i.e., the number of possible ways to assign d nodes to K groups,
without order. The cost of sampling the hyperedges can be precisely quantified since every d-dimensional hyperedge has a cost d,
and there is an average number kd of such hyperedges. Calling Ωd the space of all d-dimensional hyperedges, we find

E[kd] =
∑
e∈Ωd

P(e | p, t)

=
∑
e∈Ωd

∑
i<j∈e

ptitj
κd

=
1

κd

∑
e∈Ωd

∑
i<j∈e

ptitj

=

(
N−2
d−2

)
κd

∑
i<j∈V

ptitj

≈
(
N−2
d−2

)
N2

κd

K∑
b≤d=1

pbdnbnd . (E3)
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Hence, the average computational cost is given by

D∑
d=2

O

(
Kd

d!
+ dE[kd]

)
. (E4)

Given the large size of Ωd, the cost in Eq. (E4) tightly concentrates around the expected value. In sparse regimes, the term Kd/d!
dominates, as the number of hyperedges kd is low, while the two terms both contribute to the cost when E[kd] grows.

3. Experiments

We employ the sampling algorithm to generate the hypergraphs used to study the phase transition of Sec. IV B. Here, we set the
affinity matrix to have all equal in-degree caa = cin and out-degree cab = cout, so that Eq. (15) becomes cin +(K − 1)cout = Kc
for some K and c. In our experiments, we sample hypergraphs with N = 104 nodes by fixing c = 10 and K = 4, we span across
65 values of cout in [0, 500], and compute the corresponding cin = cin(cout;K, c). For each experimental configuration cin, cout,
we draw 5 hypergraphs from different random seeds. This gives a total of 325 hypergraphs.

We use the expected number of d-dimensional hyperedges E[kd] in Eq. (E4) and the average degree ⟨d⟩ in Eq. (A2) to perform
a sanity check between our sampling algorithm and theoretical derivations. For constant in and out-degree, these two metrics
evaluate to

E[kd] ≈
Nc

d(d− 1)
,

⟨d⟩ ≈ Cc

2
.

The results in Fig. 6 show excellent agreement between theory and experiments. We also highlight that the sampling method is
extremely fast and has an average sampling time of t = 32.7± 2.7 on the experimental setup considered here.
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FIG. 6: Sampling experiments. The expected number of |f |-dimensional hyperedges returned by our experiments (blue) is in
great accordance with the theoretical prediction E[k|f |] (black). Similarly, the experimental expected degrees distribute around
the analytical ⟨d⟩. Shaded areas are standard deviations over 5 random hypergraph extractions, at each |f |.
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Appendix F: Phase transition: complementary derivations and additional results

1. Proof of Proposition 1

First, we want to prove that all communities have the same expected degree. In order to do that, we start by computing the
expected degree ⟨di⟩ of a given node i ∈ V . Following similar derivations to those for ⟨d⟩ Appendix A, we find

⟨di⟩ =
∑

e∈E:i∈e

P(e | p, t)

=
∑

e∈E:i∈e

πe
κe

= C ′
K∑

a=1

ctiana +
NC ′′

2

 K∑
b,d=1

cbdnbnd +

K∑
b=1

cbbn
2
b

 ,

where C ′ =
∑D

d=2

(
N−2
d−2

)
/κd, as previously defined, and C ′′ =

∑D
d=3

(
N−3
d−3

)
/κd. Therefore, the average degree ⟨b⟩ of a

community b ∈ [K], evaluates to

⟨b⟩ = 1

Nb

∑
i∈V :ti=b

⟨di⟩

=
1

Nb

∑
i∈V :ti=b

C ′
K∑

a=1

ctiana +
NC ′′

2

 K∑
d,m=1

cdmndnm +

K∑
d=1

cddn
2
d


=

1

Nb

∑
i∈V :ti=b

C ′
K∑

a=1

cbana +
NC ′′

2

 K∑
d,m=1

cdmndnm +

K∑
d=1

cddn
2
d


= C ′

K∑
a=1

cbana +
NC ′′

2

 K∑
d,m=1

cdmndnm +

K∑
d=1

cddn
2
d


= C ′c+

NC ′′

2

 K∑
d,m=1

cdmndnm +

K∑
d=1

cddn
2
d

 ,

which is independent of the specific choice of group b, from which we conclude that all the groups yield equal expected degrees.

Second, we wish to demonstrate that MP’s fixed points are as in Eqs. (16)–(17). Notice that in the derivations here below, when
convenient, we interchange equivalent summations over function nodes’ neighbors ∂e and hyperedge e. By treating all quantities
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that are independent of ti in qi→e(ti), q̂e→i(ti) as a constant, we evaluate Eq. (7) as

q̂e→i(ti) ∝
∑

tj :j∈e\i

πe
κe

∏
j∈∂e\i

qj→e(tj)

∝
∑

tj :j∈e\i

∑
r<s∈e

ptrts
∏

j∈∂e\i

qj→e(tj)

=
∑

tj :j∈e\i

∑
r∈e\i

ptrti
∏

j∈∂e\i

qj→e(tj) +
∑

r<s∈e\i

ptrts
∏

j∈∂e\i

qj→e(tj)


=
∑
r∈e\i

∑
tr

ptrtiqr→e(tr) +
∑

r<s∈e\i

∑
tr,ts

ptrtsqr→e(tr)qs→e(ts)

=
∑
r∈e\i

∑
tr

ptrtintr +
∑

r<s∈e\i

∑
tr,ts

ptrtsntrnts

=
1

N

∑
r∈e\i

c+
∑

r<s∈e\i

c


=

c

N

(
(|e|−1) + c

|e|(|e|−1)

2

)
. (F1)

Since messages q̂e→i(ti) are normalized to have unitary sum, Eq. (F1) implies that q̂e→i(ti) = 1/K. Substituting this result into
Eq. (8), one finds also that qi(ti) = nti . The variable-to-function node messages are updated with Eq. (9), which includes Eq. (12)
for the external field h(ti). The external field evaluated at fixed points is also constant, in fact

h(ti) =
C ′

N

∑
j∈V

∑
tj

ctitjqj(tj)

=
C ′

N

∑
j∈V

∑
tj

ctitjntj

=
C ′

N

∑
j∈V

c

= C ′c . (F2)
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The result of Eq. (F2) implies that the messages in Eq. (9) read

qi→e(ti) ∝ nti

 ∏
f∈E

f∈∂i\e

∑
tj :j∈∂f\i

πf
∏

j∈∂f\i

qj→f (tj)



= nti

 ∏
f∈E

f∈∂i\e

∑
tj :j∈∂f\i

πf
∏

j∈∂f\i

ntj



∝ nti

 ∏
f∈E

f∈∂i\e

∑
r<s∈f

∑
tj :j∈∂f\i

ptrts
∏

j∈∂f\i

ntj



∝ nti

 ∏
f∈E

f∈∂i\e

 ∑
r<s∈f

∑
trts

ptrtsntrnts +
∑
r∈f\i

∑
tr

ptrtintr




∝ nti

 ∏
f∈E

f∈∂i\e

( |f |(|f |−1)

2
c+ (|f |−1)c

)
∝ nti ,

which is exactly Eq. (17).

2. Transition matrix formula

In this section, we derive the expression for the transition matrix T̃ ab
r in Eq. (19). To simplify the notation, we indicate the

(variable node, function node) pairs at level r as (ir, fr) = (i, e), and similarly, at level r + 1 we use (ir+1, fr+1) = (j, f).
Hence, the transition matrix becomes

T̃ ab
r =

∂qi→e(a)

∂qj→f (b)
.

In order to find a closed-form expression of T̃ ab
r , we claim that the two following Lemmas hold.

Lemma 1. Under the constant group degree assumption in Eq. (15):

1. for any hyperedge e and nodes i ∈ e: ∑
tj :j∈e\i

πe
∏

k∈e\i

qk→e(tk) =
c|e|(|e|−1)

2N
; (F3)

2. for any hyperedge e and nodes i, j ∈ e:∑
tk:k∈e\i,j

πe
∏

m∈e\i,f

qm→e(tm) =
1

N

[
ctitj + c(|e|−2)

(
2 +

|e|−3

2

)]
. (F4)

Lemma 2 (Employing Lemma 1). Under the constant group degree assumption in Eq. (15):

1. the derivative ∂ exp(−h(a))/∂qi→e(b) is negligible to leading order in N ;

2. the external field is constant h(ti) = const.;
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3. call Zi→e the normalizing constant of qi→e, then

Zi→e =
∏

g∈∂i\e

c
|g|(|g|−1)

2N
(F5)

∂Zi→e

∂qj→f (b)
=

c

N

 ∏
g∈∂i\e,f

c
|g|(|g|−1)

2N

[1 + (|f |−2)

(
2 +

|f |−3

2

)]
. (F6)

The claims allow us to derive the transition matrix. Particularly, we make explicit all derivatives and variable-to-function nodes
messages as in Eq. (9). By also ignoring all terms relative to h(ti) thanks to Lemma 2, we get

∂qi→e(a)

∂qj→f (b)
≈ − 1

(Zi→e)2
∂Zi→e

∂qj→f (b)
nti

 ∏
g∈∂i\e

∑
tm:m∈∂g\i

πg
∏

m∈∂g\i

qm→g(tm)


+

1

Zi→e
nti

 ∏
g∈∂i\e,f

∑
tm:m∈∂g\i

πg
∏

m∈∂g\i

qm→g(tm)

 ∑
tm:m∈∂f\i,j

πf
∏

m∈∂f\i,j

qm→f (tm)

 .

The terms involving Zi→e are in Lemma 2 (Eq. (F5) and Eq. (F6)), while the expressions in parentheses are in Lemma 1 (Eq. (F3)
and Eq. (F4)). By performing all the substitutions we get

∂qi→e(a)

∂qj→f (b)
= (F7)

− nti

 ∏
g∈∂i\e

c
|g|(|g|−1)

2N

−2 ∏
g∈∂i\e,f

c
|g|(|g|−1)

2N

 ∏
g∈∂i\e

c
|g|(|g|−1)

2N

 c

N

[
1 + (|f |−2)

(
2 +

|f |−3

2

)]

+ nti

 ∏
g∈∂i\e

c
|g|(|g|−1)

2N

−1 ∏
g∈∂i\e,f

c
|g|(|g|−1)

2N

 1

N

[
ctitj + c(|f |−2)

(
2 +

|f |−3

2

)]

= nti

(
c
|f |(|f |−1)

2N

)−1{
− c

N

[
1 + (|f |−2)

(
2 +

|f |−3

2

)]
+

1

N

[
ctitj + c(|f |−2)

(
2 +

|f |−3

2

)]}
=

2

|f |(|f |−1)
nti

(ctitj
c

− 1
)

=
2

|f |(|f |−1)
na

(cab
c

− 1
)

which is exactly the expression in Eq. (19).
What is left to complete all derivations is to prove Lemma 1 and Lemma 2, which is done next.

a. Proof of Lemma 1

1. Derivation of Eq. (F3):∑
tj :j∈e\i

πe
∏

k∈e\i

qk→e(tk) =
∑

tj :j∈e\i

∑
r<s∈e

ptrts
∏

k∈e\i

qk→e(tk)

=
∑

r<s∈e\i

∑
trts

ptrtsqr→e(tr)qs→e(ts) +
∑
r∈e\i

∑
tr

ptrtiqr→e(tr)

=
1

N

∑
r<s∈e\i

∑
tr,ts

ctrtsntrnts +
1

N

∑
r∈e\i

∑
tr

ctrtintr

=
c

N

[
(|e|−1)(|e|−2)

2
+ (|e|−1)

]
=
c(|e|−1)|e|

2N
.
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2. Derivation of Eq. (F4):∑
tk:k∈e\i,j

πe
∏

m∈e\i,j

qm→e(tm) =
∑

tk:k∈e\i,j

∑
r<s∈e

ptrts
∏

m∈e\i,j

qm→e(tm)

= ptitj +
∑

r∈e\i,j

∑
tr

ptrtiqr→e(tr) +
∑

r∈e\i,j

∑
tr

ptrtjqr→e(tr)

+
∑

r<s∈e\i,j

∑
tr,ts

ptrtsqr→e(tr)qs→e(ts)

=
1

N

(
ctitj +

∑
r∈e\i,j

∑
tr

ctrtintr +
∑

r∈e\i,j

∑
tr

ctrtjntr +
∑

r<s∈e\i,j

∑
tr,ts

ctrtsntrnts

)

=
1

N

ctitj + ∑
r∈e\i,j

c+
∑

r∈e\i,j

c+
∑

r<s∈e\i,j

c


=

1

N

[
ctitj + c(|e|−2)

(
2 +

|e|−3

2

)]
.

b. Proof of Lemma 2

1. Using Eq. (12), we write

∂ exp(−h(a))
∂qi→e(b)

= exp

(
−C

′

N

∑
v∈V

∑
tk

catkqk(tk)

)(
−C

′

N

∑
k∈V

∑
tv

catk
∂qk(tk)

∂qi→e(b)

)
. (F8)

Only few of the derivatives ∂qk(tk)/∂qi→e(b) entering Eq. (F8) are non-zero. Hence, the full derivative has negligible
order O(1/N).

2. The fact that the external field is constant was already shown in Eq. (F2) during the proof of Proposition 1.

3. As just proved, we can ignore the external field in the expression of Zi→e, and find

Zi→e ≈
∑
ti

qi→e(ti)

=
∑
ti

nti

 ∏
g∈∂i\e

∑
tj :j∈∂g\i

πg
∏

j∈∂g\i

qj→g(tj)

 . (F9)

Utilizing result Eq. (F3) in Lemma 1, Eq. (F9) simplifies to

Zi→e =
∑
ti

nti

 ∏
g∈∂i\e

c
|g|(|g|−1)

2N


=

 ∏
g∈∂i\e

c
|g|(|g|−1)

2N

 .

which results in Eq. (F5), as desired. Similarly, to compute the derivative ∂Zi→e/∂qj→f (b) we can ignore all appearing
∂ exp(−h(a))/∂qj→f (b) and h(ti) thanks the Lemma’s first two points (just proved). Hence

∂Zi→e

∂qj→f (b)
=

∂

∂qj→f (b)

∑
ti

nti

 ∏
g∈∂i\e

∑
tj :j∈∂g\i

πg
∏

j∈∂g\i

qj→g(tj)


=
∑
ti

nti

 ∏
g∈∂i\e,f

∑
tm:m∈∂g\i

πg
∏

m∈∂g\i

qm→g(tm)

 ∑
tm:m∈∂f\i,j

πf
∏

m∈∂f\i,j

qm→f (tm)

 ,
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and using Eq. (F3) and Eq. (F4) from Lemma 1, conclude with

=
1

N

 ∏
g∈∂i\e,f

c
|g|(|g|−1)

2N

[∑
ti

ntictitj + c(|f |−2)

(
2 +

|f |−3

2

)]

=
c

N

 ∏
g∈∂i\e,f

c
|g|(|g|−1)

2N

[1 + (|f |−2)

(
2 +

|f |−3

2

)]
.

3. Elapsed time of MP

In Fig. 7, we plot the running time of MP when performing the synthetic experiments of Sec. IV B. Elapsed times become
prohibitively large when cout/cin increases. For this reason, we threshold the maximum number of MP iterations and obtain the
plateaus of Fig. 7.

FIG. 7: Elapsed time for MP. For both D = 2 and D = 5, the elapsed times plateau due to the threshold imposed on MP’s
maximum number of iterations. Shaded areas are standard deviations over 5 random initializations of MP. Vertical dotted lines are
theoretical detectability bounds derived from Eq. (26).

Appendix G: Calculations of the free energy

After MP, it is possible to approximate the log-evidence of the data, i.e., the log-normalizing constant logZ, as per Eq. (5). The
equivalent quantity F = − logZ, called the free energy of the system, can be obtained via the following cavity-based general
formula:

F ≈ −
∑
i∈V

fi +
∑
e∈Ω

(|e|−1)fe , (G1)

where

fi = log

∑
ti

nti
∏
e∈∂i

∑
tj :j∈∂e\i

(
πe
κe

)Ae
(
1− πe

κe

)1−Ae ∏
j∈∂e\i

qj→e(tj)


fe = log

 ∑
tj :j∈∂e

(
πe
κe

)Ae
(
1− πe

κe

)1−Ae ∏
j∈∂e

qj→e(tj)

 .

Assuming that MP has converged, all messages qj→e(tj) are available. Notice, however, that naive computations of the fi and fe
addends are unfeasible, due to the exploding sums over tj : j ∈ ∂e. In the following, we show how such computations can be
performed efficiently.

1. Calculations of fi.
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As one can observe from Eq. (B1) and Eq. (B2), the fi terms are the log-normalizing constants of qi, therefore they can be
computed similarly. In particular, ignoring constants, by Eq. (B13), the following simplification holds:

fi = log

∑
ti

nti
∏
e∈E
e∈∂i

∑
tj :j∈∂e\i

πe
∏

j∈∂e\i

qj→e(tj) exp(−h(ti))

 .

The single terms indexed by e ∈ E, i.e., the values
∑

tj :j∈∂e\i πe
∏

j∈∂e\i qj→e(tj), are equivalent to the unnormalized
messages q̂e→j(tj). For this reason, they can be computed with the same dynamic program presented in Appendix D 1.

2. Calculations of fe.

While the fi terms in Eq. (G1) are computed singularly, we take a different approach and calculate the whole sum∑
e∈Ω(|e|−1)fe without computing the single fe, as this would be impossible due to their exploding number. First, we

separate the terms over Ω in Eq. (G1) as follows.

∑
e∈Ω

(|e|−1)fe =
∑
e∈Ω

(|e|−1) log

 ∑
tj :j∈∂e

(
πe
κe

)Ae
(
1− πe

κe

)1−Ae ∏
j∈∂e

qj→e(tj)


= log

∏
e∈Ω

 ∑
tj :j∈∂e

(
πe
κe

)Ae
(
1− πe

κe

)1−Ae ∏
j∈∂e

qj→e(tj)

|e|−1


= log

∏
e∈E

 ∑
tj :j∈∂e

πe
∏
j∈∂e

qj→e(tj)

|e|−1
+ log

 ∏
e∈Ω\E

 ∑
tj :j∈∂e

(
1− πe

κe

) ∏
j∈∂e

qj→e(tj)

|e|−1
+ const. .

This allows us to compute the last two addends separately.

Focusing on the second addend, and proceeding similarly as for the external field calculations that brought to Eq. (B19), we
get

log
∏

e∈Ω\E

 ∑
tj :j∈∂e

(
1− πe

κe

) ∏
j∈∂e

qj→e(tj)

|e|−1

≈ log
∏

e∈Ω\E

exp
− 1

N

∑
tj :j∈∂e

(∑
k<m∈e ctktm

κe

) ∏
j∈∂e

qj→e(tj)

|e|−1

≈ log
∏

e∈Ω\E

exp
− 1

N

∑
tj :j∈∂e

(∑
k<m∈e ctktm

κe

) ∏
j∈∂e

qj(tj)

|e|−1

= log
∏

e∈Ω\E

exp

1− |e|
N

∑
tj :j∈∂e

(∑
k<m∈e ctktm

κe

) ∏
j∈∂e

qj(tj)


≈ log

∏
e∈Ω

exp

1− |e|
N

∑
tj :j∈∂e

(∑
k<m∈e ctktm

κe

) ∏
j∈∂e

qj(tj)


=
∑
e∈Ω

1− |e|
N

∑
tj :j∈∂e

(∑
k<m∈e ctktm

κe

) ∏
j∈∂e

qj(tj)

=
1

N

∑
e∈Ω

1− |e|
κe

∑
k<m∈e

∑
tj :j∈∂e

ctktm
∏
j∈∂e

qj(tj)

=
1

N

∑
e∈Ω

1− |e|
κe

∑
k<m∈e

∑
tktm

ctktmqk(tk)qj(tj)

=
C ′′′

N

∑
k<m∈V

∑
tktm

ctktmqk(tk)qj(tj)
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where C ′′′ :=
∑D

d=2
1−d
κd

(
N−2
d−2

)
. Also define qV (a) =

∑
k∈V qk(a). Then,

log
∏

e∈Ω\E

 ∑
tj :j∈∂e

(
1− πe

κe

) ∏
j∈∂e

qj→e(tj)

|e|−1

≈ C ′′′

N

∑
k<m∈V

∑
tktm

ctktmqk(tk)qj(tj)

=
C ′′′

N

∑
ab

cab
∑

k<m∈V

qk(a)qj(b)

=
C ′′′

2N

∑
ab

cab

 ∑
k,m∈V

qk(a)qj(b)−
∑
k∈V

qk(a)qk(b)


=
C ′′′

2N

∑
ab

cab

[
qV (a)qV (b)−

∑
k∈V

qk(a)qk(b)

]

which can be computed in linear time O(|V |K2).

The first addend requires different considerations. Since naive calculations of every sum on tj : j ∈ ∂e cost O(K |e|), and
thus are unfeasible, we design a dynamic program similar to that of Appendix D 1. For simplicity, consider a hyperedge
e = 1, . . . ,m. Proceeding as in Appendix D 1, we define the quantities:

η̃(e, n) =
∑

tj :j=1,...,n

πe
∏

j=1,...,n

qj→e(tj) (G2)

s̃n(a) =
∑
t1

pat1q1→e(t1) + . . .+
∑
tn−1

patn−1
qn−1→e(tn−1) . (G3)

Notice that η̃(e,m) =
∑

tj :j∈∂e πe
∏

j:j∈∂e qj→e(tj) is the quantity we need to compute. For Eqs. (G2)–(G3), the
following recursions hold:

η̃(e, n) = η̃(e, n− 1) +
∑
tn

qn→e(tn)s̃n(tn)

s̃n(a) = s̃n−1(a) +
∑
tn−1

ptn−1aqn−1→e(tn−1) .

Here, computing the final η̃(e,m) costs O(K|e|), and computing it for all the observed hyperedges costs
∑

e∈E O(K|e|).
Notice that utilizing the dynamic program in Appendix D 1 would cost

∑
e∈E O(K2|e|2), plus the processing needed

to obtain the η̃(e,m) value. Hence, the new recursions result in good computing savings with minimal changes to the
numerical implementation.

1. Computation of the free energy landscape on High School data

We explain further how to obtain the free energy landscape of the High School dataset in Fig. 5. The three vertices are inferred
using the dataset’s hyperedges whose size is lower or equal than D, with D = 2, 3, 4. After having performed inference on every
vertex, we obtain the parameters (p2, n2), (p3, n3), (p4, n4)—each pair is associated with a value of D—for the affinity matrix
and the community prior.

Every point in the simplex is generated with a convex combination of the three vertices. Particularly, we define the parameters

psimplex = λ2p2 + λ3p3 + λ4p4

nsimplex = λ2n2 + λ3n3 + λ4n4 ,

where 0 ≤ λi ≤ 1 and
∑

i=2,3,4 λi = 1. For any value of psimplex, nsimplex, we compute the free energy on the whole High
School dataset, i.e., taking all hyperedges. The free energy approximations following Eq. (G1) require the messages, marginals
and external field, which can be inferred via MP and in turn depend on psimplex, nsimplex. For every point in the simplex, we fix
psimplex, nsimplex and infer all the remaining quantities via MP, to then compute the free energy displayed in Fig. 5.



28

FIG. 8: Affinity patterns on the High School dataset. Colors of the matrices’ entries are corresponding to their log values,
properly normalized to ease the Figure’s readability. (a) Edge density on the clique decomposition of the High School dataset. As
in Mastrandrea et al. [57], the edge density between two classes X and Y corresponds to the number of observed edges between
nodes of the classes, normalized with respect to the total number of possible edges between X and Y . (b) Affinity matrix p
inferred by the EM-MP scheme with D = 4. The method detects 5 classes, whose affinity values are as in the matrix’s entries.
Colors of classes follow the color coding of Fig. 5(c). (c) Inferred communities of nodes and the partition in the classes of students.
The panel is identical to Fig. 5(c).

2. Inference of class affinity on High School data

We expand on the community patterns detected on the High School data for D = 4, which are represented in Fig. 5. The nine
classes observed in the data are named after their subjects of focus, and are: MP, MP*1, MP*2 (mathematics and physics), PC,
PC* (physics and chemistry), PSI* (engineering), 2BIO1, 2BIO2, 2BIO3 (biology) [57].

We compare the the edge density patterns computed on the data in Mastrandrea et al. [57], and shown in Fig. 8(a), with the
affinity matrix p inferred on the High School dataset fixing D = 4, shown in Fig. 8(b). Additionally, in Fig. 8(c), we plot the
partition of the nodes into communities with their labeling in classes.

We observe that classes that are inferred in the same community appear to also belong to classes that have a larger number of
external interactions with other classes in the same inferred community. For instance, the BIO classes belong to two communities
that are disjoint from all others, see Fig. 8(c). Within the BIO classes, 2BIO2 and 2BIO3 are grouped in the same community, as
they have slightly higher edge density of 0.12, compared to the 0.11 and 0.09 observed for 2BIO1.

The affinity matrix shown in Fig. 8(b) aligns well with the inter- and intra-community interactions. For instance, communities 1
and 2 (that contain the BIO classes) have an upper diagonal block that isolates them from all others. Communities 3 and 5, which
largely match students from classes MP and PC, are disassortative with the remaining classes, grouped in community 4.

3. Further comments on higher-order interactions on High School data

D AUC

2 0.710± 0.002
3 0.780± 0.003
4 0.843± 0.004
5 0.813± 0.003

TABLE I: AUC scores on the High School dataset. We perform MP and EM inference on the High School dataset utilizing
hyperedges up to size D. Then, we compute the AUC on the full dataset, i.e. , on the hypergraph with all hyperedges up to D = 5.

The goodness of link prediction, represented by the AUC score, shows that interactions up to size 4 improve the quality of
inference, while utilizing interaction of size 5 yields a slight drop in performance.

The High School hypergraph contains interactions of orders ranging from 2 to 5. In our experiments, we observe that optimal
inference is reached at maximum hyperedge size D = 4, while utilizing interactions of order 5 slightly degrades performance. We



29

confirm this in varioys ways. The communities inferred (now shown) are less granular than those presented for D = 4. A similar
trend is observed in the free energy (not shown), that slightly increases when performing inference on the whole dataset. Finally,
we measure the link prediction performances utilizing parameters inferred with D = 2, 3, 4, 5, and compute the AUC with respect
to the full dataset, which we include in Table I. Here again we observe a slight drop in AUC when utilizing parameters inferred at
D = 5, despite the AUC being computed with respect to all hyperedges, including those not observed when training on lower
values of D.

There could be various reasons for this result. A possible explanation is that the interactions at D = 5 are noisier and/or less
aligned with the data generating process assumed by our generative model. We recall that the data is collected via proximity
sensors, and that social interactions in larger groups are harder to detect, and may arise from different types of link formation
mechanisms.
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[40] B. Kamiński, P. Prałat, and F. Théberge, Hypergraph Artificial
Benchmark for Community Detection (h–ABCD), Journal of
Complex Networks 11, cnad028 (2023).

[41] N. Ruggeri, F. Battiston, and C. D. Bacco, A framework
to generate hypergraphs with community structure (2023),
arXiv:2212.08593 [cs.SI].

[42] N. Ruggeri, A. Lonardi, and C. De Bacco, Message-Passing on
Hypergraphs: Detectability, Phase Transitions and Higher-Order
Information, GitHub Repository, https://github.com/
nickruggeri/hypergraph-message-passing
(2023).

[43] G. T. Cantwell and M. E. J. Newman, Message passing on net-
works with loops, Proceedings of the National Academy of
Sciences 116, 23398 (2019).

[44] A. Kirkley, G. T. Cantwell, and M. E. J. Newman, Belief propa-
gation for networks with loops, Science Advances 7, eabf1211
(2021).

[45] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likeli-
hood from Incomplete Data via the EM Algorithm, Journal of
the Royal Statistical Society. Series B (Methodological) 39, 1
(1977), full publication date: 1977.

[46] H. Kesten and B. Stigum, Limit theorems for decomposable
multi-dimensional Galton-Watson processes, Journal of Mathe-
matical Analysis and Applications 17, 309 (1967).

[47] H. Kesten and B. P. Stigum, Additional Limit Theorems for
Indecomposable Multidimensional Galton-Watson Processes,
The Annals of Mathematical Statistics 37, 1463 (1966).

[48] M. Mézard and A. Montanari, Reconstruction on Trees and Spin
Glass Transition, Journal of Statistical Physics 124, 1317 (2006).

[49] E. Schneidman, M. J. Berry, R. Segev, and W. Bialek, Weak
pairwise correlations imply strongly correlated network states in

a neural population, Nature 440, 1007 (2006).
[50] C. Giusti, E. Pastalkova, C. Curto, and V. Itskov, Clique topol-

ogy reveals intrinsic geometric structure in neural correlations,
Proceedings of the National Academy of Sciences 112, 13455
(2015).

[51] L. Merchan and I. Nemenman, On the Sufficiency of Pairwise
Interactions in Maximum Entropy Models of Networks, Journal
of Statistical Physics 162, 1294 (2016).

[52] E. Schneidman, S. Still, M. J. Berry, and W. Bialek, Network
information and connected correlations, Phys. Rev. Lett. 91,
238701 (2003).

[53] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet Alloca-
tion, J. Mach. Learn. Res. 3, 993–1022 (2003).

[54] L. L. Campbell, Exponential entropy as a measure of extent
of a distribution, Zeitschrift für Wahrscheinlichkeitstheorie und
Verwandte Gebiete 5, 217 (1966).

[55] T. Cover and J. Thomas, Elements of Information Theory (Wiley,
2006).

[56] J.-G. Young, G. Petri, and T. P. Peixoto, Hypergraph reconstruc-
tion from network data, Communications Physics 4, 135 (2021).

[57] R. Mastrandrea, J. Fournet, and A. Barrat, Contact Patterns
in a High School: A Comparison between Data Collected Us-
ing Wearable Sensors, Contact Diaries and Friendship Surveys,
PLOS ONE 10, 1 (2015).

[58] M. E. J. Newman and A. Clauset, Structure and inference in
annotated networks, Nature Communications 7, 11863 (2016).

[59] M. Contisciani, E. A. Power, and C. De Bacco, Community
detection with node attributes in multilayer networks, Scientific
Reports 10, 15736 (2020).

[60] A. Badalyan, N. Ruggeri, and C. De Bacco, Hypergraphs
with node attributes: structure and inference, (2023),
arXiv:2311.03857 [cs.SI].

[61] N. W. Landry, J.-G. Young, and N. Eikmeier, The simpliciality of
higher-order networks (2023), arXiv:2308.13918 [physics.soc-
ph].

[62] To deal with large N# and κd that cannot be stored in memory,
we approximate the binomial in Eq. (E2) with a Gaussian

N
(
π#

κd
N#,

π#

κd
N#

(
1− π#

κd

))
Crucially, the Gaussian’s mean and variance only involve the
ratio N#/κd, which is numerically stable. We adopt this approx-
imation when the Gaussian’s variance exceeds 10.

[63] A Poisson approximation of the binomial

Pois

(
N#

π#

κd

)
is used if N# > 20 and N#π#/κd < 0.1, or if N# > 100 and
N#π#/κd < 10.

[64] For n > 5, we adopt the Ramanujan approximation [66]

logn! ≈ n logn− n
log

(
1
30

+ n(1 + 4n(1 + 2n))
)

6

+
log π

2
,

giving error of order O
(
1/n3

)
.

[65] P. S. Chodrow, Configuration models of random hypergraphs,
Journal of Complex Networks 8, cnaa018 (2020).

[66] S. Ramanujan, The Lost Notebook and other Unpublished Papers
(Narosa, New Delhi, 1987).

https://proceedings.mlr.press/v151/corinzia22a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/3b24156ad560a696116454056bc88ab4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3b24156ad560a696116454056bc88ab4-Paper.pdf
https://doi.org/10.1214/21-AOS2099
https://doi.org/10.1214/21-AOS2099
https://doi.org/10.1137/22M1494713
https://doi.org/10.1137/22M1494713
https://doi.org/10.1093/acprof:oso/9780198570837.001.0001
https://doi.org/10.1093/acprof:oso/9780198570837.001.0001
https://probml.github.io/pml-book/book0.html
https://doi.org/10.1142/0271
https://doi.org/10.1142/0271
https://doi.org/10.1007/PL00011099
https://doi.org/10.1007/PL00011099
https://doi.org/https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1093/comnet/cnad028
https://doi.org/10.1093/comnet/cnad028
https://arxiv.org/abs/2212.08593
https://github.com/nickruggeri/hypergraph-message-passing
https://github.com/nickruggeri/hypergraph-message-passing
https://doi.org/10.1073/pnas.1914893116
https://doi.org/10.1073/pnas.1914893116
https://doi.org/10.1126/sciadv.abf1211
https://doi.org/10.1126/sciadv.abf1211
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/https://doi.org/10.1016/0022-247X(67)90155-2
https://doi.org/https://doi.org/10.1016/0022-247X(67)90155-2
https://doi.org/10.1214/aoms/1177699139
https://doi.org/10.1007/s10955-006-9162-3
https://doi.org/10.1038/nature04701
https://doi.org/10.1073/pnas.1506407112
https://doi.org/10.1073/pnas.1506407112
https://doi.org/10.1007/s10955-016-1456-5
https://doi.org/10.1007/s10955-016-1456-5
https://doi.org/10.1103/PhysRevLett.91.238701
https://doi.org/10.1103/PhysRevLett.91.238701
https://jmlr.csail.mit.edu/papers/v3/blei03a.html
https://doi.org/10.1007/BF00533058
https://doi.org/10.1007/BF00533058
https://books.google.de/books?id=EuhBluW31hsC
https://doi.org/10.1038/s42005-021-00637-w
https://doi.org/10.1371/journal.pone.0136497
https://doi.org/10.1038/ncomms11863
https://doi.org/10.1038/s41598-020-72626-y
https://doi.org/10.1038/s41598-020-72626-y
https://arxiv.org/abs/2311.03857
https://arxiv.org/abs/2308.13918
https://arxiv.org/abs/2308.13918
https://doi.org/10.1093/comnet/cnaa018

	Message-Passing on Hypergraphs: Detectability, Phase Transitions and Higher-Order Information
	Abstract
	Introduction
	The hypergraph stochastic block model
	Inference and generative modeling
	Induced factor graph representation
	Message-Passing (MP)
	Expectation-Maximization to learn the model parameters
	Sampling from the generative model

	Phase transition
	Detectability bounds
	Phase transition in hypergraphs
	The impact of higher-order interactions on detectability
	Entropy and higher-order information

	Experiments on real data
	Conclusion
	Acknowledgments
	Expected degree and choice of _d
	Message-Passing derivations
	Message updates
	External field updates
	Marginal beliefs updates
	Summary: approximate Message-Passing updates

	Expectation-Maximization inference
	Algorithmic and computational details
	Dynamic programming for MP
	Implementation details

	Sampling from the generative model
	The algorithm
	Computational complexity
	Experiments

	Phase transition: complementary derivations and additional results
	Proof of th: constant degree and message fixed points
	Transition matrix formula
	Proof of th: sum and product lemma
	Proof of th: derivatives on h and Z

	Elapsed time of MP

	Calculations of the free energy
	Computation of the free energy landscape on High School data
	Inference of class affinity on High School data
	Further comments on higher-order interactions on High School data

	References


