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Optimizing passengers routes is crucial to design efficient transportation networks. Recent results
show that optimal transport provides an efficient alternative to standard optimization methods.
However, it is not yet clear if this formalism has empirical validity on engineering networks. We address
this issue by considering different response functions—quantities determining the interaction between
passengers—in the dynamics implementing the optimal transport formulation. Particularly, we
compare a theoretically-grounded response function with one that is intuitive for settings involving
transportation of passengers, albeit lacking theoretical justifications. We investigate these two
modeling choices on the Paris metro and analyze how they reflect on passengers’ fluxes. We measure
the extent of traffic bottlenecks and infrastructure resilience to node removal, showing that the two
settings are equivalent in the congested transport regime, but different in the branched one. In the
latter, the two formulations differ on how fluxes are distributed, with one function favoring routes
consolidation, thus potentially being prone to generate traffic overload. Additionally, we compare our
method to Dijkstra’s algorithm to show its capacity to efficiently recover shortest-path-like graphs.
Finally, we observe that optimal transport networks lie in the Pareto front drawn by the energy
dissipated by passengers, and the cost to build the infrastructure.

I. INTRODUCTION

Finding optimal flow configurations in transport net-
works is an important problem in many real-world appli-
cations. While natural systems like river basins [1–5], leaf
venations [6–9], or slime molds [10–17] involve transport
of one type of mass only, e.g. water, this may not be the
case in several engineering systems. For instance, routing
data packets in communication networks, or passengers in
urban transportation networks, requires multicommodity
approaches where mass of different types interacts in a
shared infrastructure, contributing to minimize a unique
cost function.

Despite their practical significance, multicommodity al-
gorithms based on optimization routines are burdened by
high computational complexity, caused by the simultane-
ous assignment of multiple commodities. Therefore, prac-
titioners often rely on heuristics and approximations that
lead to suboptimal solutions [18]. Distributed approaches
like message-passing algorithms have demonstrated en-
couraging results [19–24], but remain computationally
costly in scenarios where there is a large number of origin-
destination pairs to be routed, or when the network is
not sparse.

A promising approach is that of optimal transport the-
ory. Recent studies [25, 26] have shown that this theoreti-
cal formalism can be adapted to address multicommodity
scenarios, generalizing well-established results for uni-
commodity models [27–33]. The works of Lonardi et al.
[25] and Bonifaci et al. [26] focus on a theoretical charac-
terization of the problem, drawing a formal connection
between optimal transport and an equivalent dynamical
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system that is formulated in terms of physical quantities
like conductivities and fluxes. They provide theoretical
guarantees that are valid for a particular choice of the
transport cost function. While preliminary results on
multilayer transportation networks [34] suggest an empir-
ical validity of this choice, questions remain open about
its applicability in settings involving the transport of
passengers.
In this work, we address this concern by studying the

behavior of optimal transport approaches for multicom-
modity routing on urban transportation networks, with
an empirical example analysis on the Paris metro net-
work. Our goal is to evaluate how different choices of cost
functions impact the resulting distribution of passengers
flows. In detail, we search for stationary solutions of a
dynamics where edge capacities—conductivities—grow as
an increasing function of the total amount of passengers
traveling on the edges. We numerically investigate two
practical cases, where the dependence between conductiv-
ities and fluxes is either with the sum of the passengers
traveling through the network (its 1-norm), or with the
sum of their squares (its 2-norm). The first choice is more
intuitive, since counting the total number of users in a
network is a natural metric to evaluate its occupancy.
However, the second one provides strong theoretical guar-
antees in terms of optimal transport theory [25, 26].

We design several experiments to investigate the main
properties of optimal network configurations resulting
in the two cases. First, we assess the major differences,
observing that the 2-norm case tends to dilute more sub-
stantially passengers on the network, avoiding heavily
trafficked routes. Second, we compare our model with
Dijkstra’s algorithm [35], a popular approach for shortest-
path minimization. We find that our method is a robust
and efficient alternative to reproduce shortest-path-like
networks. Furthermore, we test resilience to infrastruc-
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tural failures of the resulting optimal networks. Results
show how the geographical locations of stations, and their
degree, are decisive factors in efficiently distributing pas-
sengers on the metro. Finally, we observe that optimal
networks lie in the Pareto front drawn by two fundamen-
tal driving forces: the energy dissipated by passengers
moving in the network, and the infrastructural cost.

II. RESULTS AND DISCUSSION

A. Multicommodity routing on networks

We design a routing optimization problem on a network
G(V,E), where V and E are the sets of nodes and edges,
and each edge has length `e > 0. The edges are given
a conventional orientation stored by a signed incidence
matrix, with elements Bve = {+1,−1, 0} if e is the head,
the tail or neither of them for node v, respectively. We
model transportation of M ≥ 1 commodities through the
network, each identified by an index i. We use them to
differentiate passengers entering the network from differ-
ent stations (i ∈ V ), so that multiple users sharing the
same path catalyze traffic congestion. Suppose that a
commodity i has mass Siv flowing into node v and outflows
Siu ∀u 6= v, with

∑
v S

i
v = 0, ∀i ∈ V , to ensure that the

system is isolated.
The main quantities of interest are the edge conduc-

tivities µe ≥ 0, which can be thought of as capacities or,
more generally, quantities proportional to the size of the
edge. These regulate how passengers flow on the network,
as higher conductivity is allocated to edges that are more
utilized, while low-conductivity edges are those used by
fewer passengers. Hence, determining the values of µe,
∀e ∈ E, implies determining the trajectories taken by pas-
sengers, and therefore the traffic flow on the network. In
our model, the distribution of conductivities is regulated
by the following dynamics:∑

u

Lvup
i
u = Siv ∀v ∈ V,∀i = 1, . . . ,M (1)

dµe
dt

= µβ−2
e f(Fe)− µe ∀e ∈ E, (2)

where L is the weighted Laplacian matrix of the network,
with entries Lvu :=

∑
e (µe/`e)BueBve; piv are pressure

potentials generated by a commodity i on the nodes; f(·)
is a non-negative function of the fluxes Fe,M -dimensional
vectors with entries F ie := µe(piu − piv)/`e, for e = (u, v).

Eq. (1) is Kirchhoff’s law, expressing conservation of
mass; Eq. (2) regulates the time evolution of the con-
ductivities by means of a feedback mechanism where the
higher the flux on an edge, the larger its conductivity µe.
All commodities share one unique infrastructure, so we
follow [25] and assume that µe is the same for all i.
The growth in time of µe is governed by the function

f(·), that in multicommodity optimal transport settings
is typically an increasing and differentiable function of

some norm of the fluxes [25, 26]. The aim of our work is
to investigate how different expressions of f(·) result in
different distributions of passengers flows, thus we focus
on the following two choices: (i) f(x) = ||x||22 (2-norm),
and (ii) f(x) = ||x||21 (1-norm). The first is supported
by theoretical groundings as derived in [25]. However,
it may not be the most appropriate one in applications
involving transport of passengers, as the 2-norm does
not have a straightforward interpretation in these cases.
On the contrary, the latter is arguably a more natural
choice, backed up by the intuition that edge capacities
are controlled by the number of passengers traveling on
them (instead of the sum of squares). Both norms are
taken squared, this is motivated by an analogy between
our dynamics and Joule’s law in electrical circuits, that
we discuss in Section II B.

The contribution of f(·) in the dynamics is balanced
by a negative linear contribution in the conductivities,
determining their exponential decay in time if no mass is
moving through an edge. Note that our dynamics is highly
non-linear in µe, since solutions of Kirchhoff’s law are
of the form piv =

∑
u L
†
vuS

i
u, with † denoting the Moore-

Penrose inverse. Finally, the role of the free parameter 0 <
β < 2 is to capture different transportation mechanisms:
β > 1 consolidates passengers on fewer edges, following a
principle of economy of scale; β < 1 enforces passengers
to distribute more broadly along the network; β = 1 is
shortest-path like.

B. Connection with optimal transport

The dynamics introduced in Section IIA has a strong
connection with optimal transport theory. In fact, in [25]
it is shown that stationary trajectories of Eqs. (1) and (2)
are also stationary points of the minimization problem:

min
F∈R|E|×M

J := 1
2

∑
e

`e
µe
f(Fe) (3)

s.t.
∑
e

`eµ
2−β
e = K2−β (4)∑

e

BveF
i
e = Siv ∀v ∈ V,∀i = 1, . . . ,M, (5)

for a fixed constant K > 0 and where J is the dissi-
pation cost. Particularly, they both satisfy the scaling
µe ∼ f(Fe)δ, δ = 1/(3− β). One can thus rewrite more
compactly the previous optimization problem to that of
minimizing JΓ :=

∑
e `ef(Fe)Γ, with Γ = (2− β)/(3− β),

generalizing Banavar et al. [36].
The crucial distinction between the 1-norm and 2-norm

dynamics is that the latter admits the Lyapunov function

Lβ({µe}) := 1
2

∑
i,v

pivS
i
v + 1

2(2− β)
∑
e

`eµ
2−β
e , (6)

which enables to prove that asymptotics of the dynamics
minimize J [25]. Noticeably, the first sum in Eq. (6) is
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FIG. 1. Validation of the dynamics with the 1-norm.
We show the dissipation cost evolution along solution trajec-
tories of Eqs. (1) and (2). Results are displayed for different
combinations of the parameters ρ and β, and are averaged over
100 runs with random initializations of µe(0) ∼ U(0, 1). The
curves are normalized in (0, 1). Shaded areas denote standard
deviations, these are thicker for β > 1 since Lβ is concave,
with a rich landscape a local minima.

equivalent to J =
∑
e `e||Fe||22/µe (see Methods IVA),

reason for which the 2-norm cost appears to be the most
natural formulation of Joule’s law.

The second term in Eq. (6) isW := (
∑
e `eµ

γ
e ) /2γ with

γ = 2− β, interpretable as the cost to build the network.
With this in mind, the Lyapunov functional has the nice
interpretation of a sum of dissipation and infrastructural
costs.
These theoretical guarantees cannot be easily recov-

ered when we take the 1-norm dynamics. In this case, a
Lyapunov functional for Eqs. (1) and (2) is not straight-
forward to derive. While solving the dynamics may still
result in meaningful flows, we cannot guarantee that these
solutions minimize the cost JΓ, i.e. we still have transport
but it may not be optimal.
However, we can test this experimentally and we find

that (Fig. 1), when applied to the real network of the
Paris metro—the main example considered in this work—
JΓ decreases along solution trajectories of the dynamics,
with stationary solutions lying in a basin of the cost.
Hence, in this case, the conductivities adapt their sizes to
reduce energy dissipation. This empirical result is valid
for the settings considered in this experiment (and in the
remaining of this work), but we observed that this does
not apply to, for instance, other smaller synthetic network
topologies. Hence practitioners should first validate this
behavior in their particular setting. Our validation is
performed for several combinations of β and of the input
loads S(ρ). The parameter 0 ≤ ρ ≤ 1 is progressively
smoothing the passengers inflows data collected in [37],
with S(0) = S corresponding to the original mass matrix
extrapolated from dataset, and S(1) having uniform en-
tries, i.e. the passengers travel with the same rate from
each station to all the others (see Methods IVB and IVC
for a more detailed explanation).

C. Results on the Paris metro network

In this work, we investigate the applicability of the dy-
namics in Eqs. (1) and (2) on the Paris metro. Topology
data are taken from [38], the network is pre-processed to
have a total of |V | = 302 nodes and |E| = 359 edges, co-
herently with the observed metro of Paris. As anticipated,
we define commodities as stations where passengers enter
the network. This means that each vector Si has only
one positive element in v = i (where the passengers of
type i enter), while the remaining elements of Si con-
tain the outflows of passengers who travel from v. Other
choices can also be made based on the application, but
this will not impact the validity of the model. The values
of Si are fixed using the network manager open data [37]
(see Methods IVB for details on data pre-processing and
assignation of the users).

We test the two response functions f(·) on this network.
Optimal path trajectories resulting in these two cases can
be seen in Fig. 2a, where the thickness of each edge
is proportional to the fraction of passengers traveling
through it. As expected, for β < 1 optimal transport
networks are loopy, with many densely connected edges
having fairly uniform fluxes. On the contrary, for β > 1
optimal topologies are more tree-like, with few central
arteries where most of the traffic is concentrated. This
applies to both cases.

We notice two distinct behaviors, depending on β. For
β < 1 (β = 0.1 in Fig. 2a), the solutions cannot be distin-
guished. This is explained by the Lyapunov functionals
Lβ being strictly convex in this case, with stationary
solutions that correspond to their only minimum. This
observation suggests that in the congested transportation
regime (0 < β < 1), where one aims at minimizing traf-
fic congestions, using the theoretically-grounded 2-norm
is equivalent to the more intuitive 1-norm formulation.
This is not the case for β > 1, where the two dynamics
favor different local minima. These correspond to optimal
networks with distinct central arteries where passengers
are directed. The differences are further highlighted in
Fig. 2b, where the edges are colored with flux differences
in these two cases, and where we highlight with markers
instances of different stations highly traversed by the two
norms. In detail, we can see that two routes branch from
Charles de Gaulle-Étoile, the upper one passing by Place
de Clichy is favored by the 1-norm, and the lower one
reaching Saint-Lazare is preferred by the 2-norm. As for
the connection between Châtelet and Gare de Lyon, we
observe that the 1-norm tends to favor the shortest path
between the two stations, with most of the passengers
travelling in a straight line. On the contrary, the path
selected by the 2-norm has a deflection.
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FIG. 2. Optimal transport networks panel. (a) Optimal transport networks with β = 0.1, 1.0, 1.5 for the 1-norm
and 2-norm response functions. Edge thickness and color are proportional to ||Fe||1, normalized to sum to 1; node sizes are
proportional to the number of passengers entering them. All the quantities are averaged over 100 runs of the dynamics with
µe(0) ∼ U(0, 1). (b) Network colored using the difference of the fluxes obtained with the 1-norm and with the 2-norm. Results
are displayed for β = 1.5, and using the data of Fig. 2a. Widths of edges are proportional to the absolute value of the flux
difference, so that by matching the color and size information it is possible to distinguish differences in resulting networks
generated by the two response functions. Markerd stations are those discussed in Section II C (c) Sorted flux distribution over
the edges for β = 1.5. All quantities have been computed setting the validation forcing parameter ρ = 0.0, i.e. S(ρ = 0.0) = S
(see Methods IVB and IVC). Similar panels for ρ = 0.5 and ρ = 1.0 can be found in Supplementary Figs. S1 and S2.
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networks. (a) Gini coefficient vs. β. (b) Idle edges fraction
vs. β. Each point is averaged over 100 runs of the dynamics
with random initializations of the conductivities, µe(0) ∼
U(0, 1).

Stimulated by these qualitative differences, we investi-
gate different metrics for an in-depth quantitative eval-
uation for the case β = 1.5. First, analyzing the sorted
distributions of the fluxes ||Fe||1 in Fig. 2c, we notice
that the 1-norm dynamics has a more pronounced fat-
tailed distribution with a sharper and higher peak. This
means that the 1-norm tends to concentrate fluxes on
fewer edges. Such effect becomes visibly starker for more
homogeneous distributions of passengers entering the sta-
tions, i.e. setting ρ = 0.5, 1.0 (see Supplementary Figs. S1
and S2).

This can be better quantified by the Gini coefficient
[39], which measures the degree of inequality, in this case,

of the usage of network edges. It is defined as:

Gini coefficient(x) := 1
2|E|2x̄

∑
m,n

|xm − xn| (7)

for a quantity x, with x̄ =
∑
e xe/|E| being its mean, and

m,n denoting edges. In our analysis we set xe = ||Fe||1.
Results are shown in Fig. 3a, where the Gini coefficient
is plotted against β for different values of ρ.

As expected, the Gini coefficient increases with β, where
paths are more concentrated along fewer edges. The
values for the two dynamics are similar for β < 1, for the
reasons mentioned above. Instead, for β > 1, the markers
progressively separate as β increases. The 2-norm has
always smaller values than their counterparts, further
demonstrating the tendency of the 2-norm to dilute fluxes
on a larger area of the network.

We then study the behavior of the fraction of idle edges,
i.e. the number of edges with negligible fluxes, divided by
the total number of edges |E|, see Fig. 3b. This quantity
manifests a sudden phase transition at β = 1, where
the dynamics switches from an homogeneous distribution
of passengers on the entire network infrastructure, to a
distribution progressively more concentrated on a smaller
fraction of edges, as β increases. Finally, the 2-norm
dynamics returns fewer idle edges than the 1-norm one,
as paths are less concentrated.
To summarize, we observe two main findings. First,

we noticed that in the regime of β < 1 the 1-norm and
the 2-norm produce identical optimal networks. This
result does not hold for β > 1, in the regime where
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of vehicles passing through e as in [38]. This rescaling has been performed following the intuition that metro users moving
along the network may travel using the fastest route (that for paths of the same length is the one with more frequent trains) to
reach their destination; this may not correspond to the geographically shortest one. (a) Optimal transport networks for our
methods. Quantities are computed over 100 runs of the dynamics with random initialization of the conductivities, µe ∼ U(0, 1).
(b) Optimal transport network computed with Dijkstra’s algorithm. For all three networks, edge widths and colors are ||Fe||1,
and the size of each node is proportional to the number of passengers entering in it. (c) Relative energy difference between our
methods and Dijkstra’s, taken in absolute value. Error bars are standard deviations over 100 realizations.

many local minima in the Lyapunov Lβ generate different
optimal paths. Second, analyzing the fraction of idle edges,
the Gini coefficient of the fluxes, and their distribution,
we found that in the regime of branched transportation
(1 < β < 2), the 2-norm tends to limit more traffic
congestion, as paths are less consolidated into fewer edges
compared to the 1-norm.

D. Comparison with Dijkstra algorithm

As discussed, the main property connecting our 2-norm
dynamics with optimal transport is that its stationary
solutions are minimizers of the cost JΓ =

∑
e `e||Fe||2Γ

2 ,
with Γ = (2− β)/(3− β) [25]. This cost, for β = 1 and
M = 1 is equivalent to that of [15, 16] and, as proved
by the authors, has optimal fluxes taking the shortest
path from their source to their sink. A theoretical gen-
eralization of this result to the multicommodity setup is
not trivial. In fact, for the 2-norm case the cost reads
JΓ =

∑
e `e

√∑
i(F ie)2, that is not linear in the commodi-

ties, i.e. searching for its minimizer does not correspond
to solvingM uni-commodity problems, one for each i, and
then overlapping them. As for the 1-norm, the dissipation
cost with β = 1 is JΓ =

∑
e

∑
i `e|F ie |, and therefore its

unique global minimum corresponds to that obtained over-
lappingM shortest paths. However, the 1-norm dynamics
is not proved to be equivalent to a gradient flow converg-
ing to such minima, thus not providing any theoretical
guarantees.
Nevertheless, we can still numerically compare our

methods with a shortest path routine using Dijkstra’s
algorithm [35]. Precisely, we iterate over the commodities
and assign a flux F ie equal to the fraction of passengers
moving from the source v to the sink u, to each edge
belonging the shortest path between v and u—the latter
computed with Dijkstra’s algorithm.

We compare the optimal transport networks obtained
using our methods with β = 1 (Fig. 4a) with the networks
returned by Dijkstra’s algorithm (Fig. 4b). The three
graphs are visibly similar but not identical. Particularly,
we focus on the four highlighted areas in Fig. 4b, contain-
ing the main branches departing from the central area of
the city of Paris. We see that the more trafficked routes
in the pink South-West region are identical for our meth-
ods and for Dijkstra’s one. Traffic in the Nort-West blue
region seems to be more diluted for our methods, with
the 2-norm optimal network being slightly more similar
to Dijkstra’s. As for the North green region, both our
algorithms concentrate traffic in a curved branch covering
a large portion of the Northside of the city. This route is
not prioritized in Fig. 4b, as traffic in the green portion
is more distributed. Finally, in the South-East yellow
area, there is only one main route branching from the
city center, while its shape is straight for Dijkstra’s, our
methods favor a slight deflection.

We attribute these differences in the optimal topologies
to the high complexity of the energy landscape of JΓ. In
fact, while Dijkstra’s algorithm computes and overlaps
each source-sink shortest path separately, our methods
treat all the commodities at once. This may lead to
convergence in suboptimal points, in particular around
β = 1, where the cost transitions from being strictly
convex to strongly concave. While our method in this
case may not always reach an optimal solution, it has
the practical advantage of being significantly faster than
Dijkstra’s. Indeed, our algorithms return an optimal
solutions in seconds, while Dijkstra’s routine implemented
in [40] converges in ∼ 10 minutes on the Paris metro
network.

Lastly, we test the deviation of the cost of our methods
from Dijkstra’s one. In Fig. 4c we plot the relative cost
difference taken in absolute value, that is ∆J := |JΓ −
JDijkstra|/JDijkstra, with Dijkstra’s network cost calculated
as JDijkstra =

∑
e `e||Fe||1. This has a sharp drop at

β = 1, where traffic is not favored nor penalized, with the
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FIG. 5. Traffic rerouting after network structural failures. (a) We plot the optimal transport networks after nodes
trimming. Edge widths and color are ||Fe||1, the size of each node is proportional to the number passengers entering it. All
quantities are averaged over 100 runs of the dynamics with random initialization of the conductivities, µe ∼ U(0, 1). Stars
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and nodes with colored borders are those where the passengers get redirected. The colored borders are proportional to the
passengers’ growth. (c) Gini coefficients vs. β, errorbars are standard deviations. Points are colored following the scheme used
in the rest of the panel. Similar results for the 2-norm dynamics are in Supplementary Fig. S3.

cost of our network that is similar to the actual shortest
path one returned by Dijkstra’s algorithm. For β < 1
we have JΓ > JDijkstra, showing that penalizing traffic
congestion has the drawback of producing more expensive
infrastructures. We observe the opposite behavior for
β > 1, where JΓ < JDijkstra, with congested networks
that are progressively cheaper as β increases.

E. Network robustness to failures

Having analyzed how the two dynamics result in net-
works with different flows of passengers, we now investi-
gate their robustness to structural failures, i.e. removal
of nodes. In particular, we study which stations play a
central role in alleviating traffic overload in the congested
transportation regime. To assess this, we run our dynam-
ics with β = 0.1, a small value of the critical exponent
prone to favor homogeneous distributions of fluxes, and
we calculate the Gini coefficient.

In detail, we remove sequentially a total of four sta-
tions from the network: Châtelet, Gare du Nord, Saint-
Lazare, and Gare de Lyon. The last three are those with
the largest number of passengers entering them, while
Châtelet has a central position and a high node degree
d = 8. Once each station was removed, all the passengers
that were entering it have been redirected to its neighbor-
ing nodes, and then solutions of the dynamics were found
with this setting, as depicted in Fig. 5.

In Fig. 5a we display the 1 + 4 network obtained remov-
ing none, and the stations indicated in Fig. 5b. In Fig. 5c

we plot the Gini coefficients of the optimal transport net-
works against β. Looking at this last plot we notice that
for β > 1 all the points collapse together, regardless of
the number of failures. This scenario, however, is of little
interest in the situation we want to address, being flux
aggregation already favored by β > 1. As for β < 1,
the difference in Gini coefficient gets wider the lower the
β, with the largest difference found at β = 0.1, we thus
investigate this case in more detail.

Removing Châtelet from the network causes a consider-
able jump in the Gini coefficient. In fact, as we see from
the second plot in Fig. 5a, all the passengers who were
travelling on the South-West route branching from the
city center are redirected, with the consequence of con-
gesting the Southern arteries of the network. Removing
Gare du Nord is not as crucial in terms of traffic rerouting.
Indeed, the main difference between the second and the
third network of Fig. 5a is that those passengers who were
departing from Gare du Nord move to its Southern neigh-
bouring station, Gare de l’Est, and modify only slightly
their path. A large jump in the Gini coefficient is visible
after removing Saint-Lazare, which seems to be crucial in
connecting the central part of the city to its Northside. In
the fourth plot in Fig. 5a we can see how traffic becomes
highly congested in the North branch directed from East
to West. Gare de Lyon causes a negligible change in
the Gini coefficient, associated with only a modest traffic
rerouting visible in the South-East part of the network.
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F. Pareto front

To conclude our analysis of the multicommodity routing
problem it is possible to verify that stationary solutions
of Eqs. (1) and (2) lie in the Pareto front (Fig. 6), which
can be expressed in closed form as:

J

W
= γ, (8)

with γ = 2− β (see Methods IVD).
Moreover, looking at the inset of Fig. 6 and Fig. 3 we

can observe that the Gini coefficient and the fraction of
idle edges can be interpreted as driving forces respon-
sible for the design of the optimal transport network,
counterbalancing its cost. In fact, congested transport
networks obtained for low values of beta β have a high
cost, but are more resilient to damage—low Gini and no
idle edges—being their infrastructure densely connected.
On the contrary, setting β large has the effect of pro-
ducing sparse networks. These infrastructures have the
benefit of being cheaper, but they are less resistant to
node and edge failures, as mentioned in Section II E.

III. CONCLUSIONS

Multicommodity routing is a powerful tool to model
optimal network configurations in transportation systems
[18]. In this work, we developed a robust and fast model
able to perform this task finding stationary solutions of
a dynamical system controlling fluxes and conductivities
of edges. Our dynamics extends previous works focusing
solely on the uni-commodity [15, 27, 28, 30, 41], and on
the multicommodity setup [25, 26, 34].
Precisely, we propose two different response functions

regulating the growth of conductivities, whose evolution
in time is dictated by the passengers moving in the metro
infrastructure. We performed a thorough empirical study

of the optimal transport networks topologies resulting
in the two cases. Using metrics like the fraction of idle
edges and the Gini coefficient of the edge fluxes, we found
that the two functions behave similarly in the congested
transportation regime, but differently in the branched
transportation one. In this case, the 1-norm dynamics
produces flows that are more concentrated on fewer edges,
potentially leading to traffic overload. We addressed the
capability of our method to recover shortest path networks
by comparing it with Dijkstra’s routine. Such comparison
showed that our approach is a viable computational al-
ternative to perform this task, achieving accurate results
and being scalable for large networks. Additionally, we
performed an experiment to measure network robustness
to infrastructural failures, revealing that the stations of
Châtelet and Saint-Lazare are crucial to ease congestion
of metro routes. Finally, we showed that solutions of our
model lie in the Pareto front drawn by the energy dissi-
pated during transport and the network infrastructural
cost.

Altogether, our findings extend the current research in
multicommodity routing problems using optimal trans-
port principles. Our efficient implementation of the
method, and the insights provided by the empirical anal-
ysis of the network characteristics resulting in the various
optimization settings considered here, help to understand
the mechanism underlying passenger flows in transporta-
tion systems.

Our formalism can be further extended to other possible
applications related to the flow of passengers in trans-
port networks. An example could be to incorporate time
dependences in the passengers’ inflows, thus modeling
scenarios where stations are subject to different loads dur-
ing a day. We would like to remark that our approach is
applicable to a variety of practical problems unrelated to
transportation systems. A practitioner may then consider
response functions for the dynamics alternative to those
studied in this work. The analysis performed in this work
show how such a problem can be addressed and paves
the way for further research beyond urban transportation
networks.

IV. METHODS

A. Lyapunov and dissipation cost equivalence

Here we show that the first term of the Lyapunov func-
tional in Eq. (6) is identical to the 2-norm dissipation cost
J = (1/2)

∑
e `e||Fe||22/µe, we follow [25]. Multiplying

both sides of Eq. (1) for piv and summing over i and v
yields the chain of equalities∑

i,v,u,e

(µe/`e)BueBvepiupiv =
∑
i,v

pivS
i
v (9)

∑
e

`e
µe
||Fe||22 =

∑
i,v

pivS
i
v, (10)
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where we made explicit the network Laplacian entries
Lvu :=

∑
e (µe/`e)BueBve, and we used the definition of

the fluxes F ie := µe(piu − piv)/`e, for e = (u, v), and ∀i.
Eq. (10) is the identity we wanted to prove.

B. Preprocessing

The original dataset in [38] is provided as a multilayer
network embedded with different transportation types,
thus we performed a pre-processing to extract the metro
network. First, we trimmed nodes belonging to other
layers and then merged redundant stations having the
same name by collapsing them together. This redundancy
was due to the presence of stations with two entrances
located in slightly different geographical positions; their
coordinates displacement was always negligible compared
to the physical extension of the whole network. The
trimmed graph reflects consistently the real topology of
the Paris metro. For convenience, the longitude and the
latitude of nodes are rescaled within the range [0, 1].

We did not have access to the exact travel routes data,
so we assigned the entries of S based on the “importance”
of each station. In fact the number of users validating their
tickets when entering a station, the only data at disposal,
is easier to track than the number of exiting users together
with their entrance station. In practice, we assigned N−1
positive “influence factors” to each station i, one for each
node u 6= i where the users entering in i can potentially
exit: riu = gu/

∑
w 6=i g

w, instead riv=i = 0, where gv is the
amount of users entering the metro from v = i. Note that
0 ≤ riv ≤ 1 for all v nodes, and

∑
v 6=i r

i
v = 1. Thus, we

can estimate the number of people exiting from a station
u 6= i by assigning Siu = −riu gv=i, while Siv=i = gv. The
intuition is that a station with a high entering volume of
passengers, i.e. high gv, should have a large amount of
exiting users, thus its “influence” value r should be high.

C. Validation

In Section IIB we validate Eqs. (1) and (2) with the
1-norm for different configurations of the input forcings.

In particular, we define gv(ρ) = gv−ρ(gv−〈g〉) where 〈g〉
is the average number of passengers entering the stations,
and 0 ≤ ρ ≤ 1 a parameter. Using the newly defined
g(ρ) we build S(ρ) following the “influence assignment”
described in Methods IVB. Note that while ρ approaches 1
the passengers tend to distribute uniformly in the network,
with the limit case being ρ = 1 for which Siv=i = 〈g〉, and
Siu = −〈g〉/(|V | − 1) for all u 6= v = i.

D. Pareto front derivation

To obtain the Pareto form in closed form as in Eq. (8)
it is sufficient to exploit the scaling µe ∼ (Fe)δ, δ =
3−β, valid for stationary solutions of the multicommodity
dynamics. In particular, it is immediate to recover Eq. (8)
by rewriting J in Eq. (3) as a function of the conductivities
µe.
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Multicommodity network routing for transportation systems:
supplementary information

I. OPTIMAL TRANSPORT NETWORKS

In the following panels we show the optimal transport networks for different configuration of the input forcings
S(ρ). In detail, we display the results for ρ = 0.5 (Fig. S1), and those for ρ = 1.0 (Fig. S2). Looking at the rightmost
networks (β = 1.5) of Fig. S1a and Fig. S2a one can observe a clear tendency of the 1-norm dynamics to concentrate
traffic more than the 2-norm one. This trend reflects on the sorted distributions plotted in Fig. S1c and Fig. S2c,
where the fluxes are more fat-tailed and homogeneous for the 2-norm. Notably, the effect becomes starker the more
the input inflows of passengers distribute uniformly on the nodes, i.e. increasing ρ.
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FIG. S1. Optimal transport networks panel with forcing S(ρ = 0.5). For a detailed description of the subplots one can
refer to Fig. 2 in the main text.
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FIG. S2. Optimal transport networks panel with forcing S(ρ = 1.0). For a detailed description of the subplots one can
refer to Fig. 2 in the main text.
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II. NETWORK RESISTANCE TO FAILURES: 2-NORM DYNAMICS

In Fig. S3 we reproduce the experiments designed to test the resilience of optimal networks to node failures. Overall,
results are similar to those in the main text, it is worth mentioning how the Gini coefficient values Fig. S3c are higher
than the correspondent ones for the 1-norm, symptom of the tendency of the latter forcing function to aggregate traffic.
Another implication of this effect is that the Gini coefficient values for the 2-norm tend to separate more for higher β
than those of the 1-norm. In fact, the latter tend to be overlapped, regardless of the number of failures, on a larger
portion of the x-axis (where β > 1).
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FIG. S3. Traffic rerouting after network structural failures (2-norm dynamics). For a detailed description of the
subplots one can refer to Fig. 5 in the main text.
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