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Non-equilibrium statistical mechanics of the heat bath for two Brownian particles
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We propose a new look at the heat bath for two Brownian particles, in which the heat bath as a ‘system’ is both
perturbed and sensed by the Brownian particles. Non-local thermal fluctuation give rise to bath-mediated static
forces between the particles. Based on the general sum-ruleof the linear response theory, we derive an explicit
relation linking these forces to the friction kernel describing the particles’ dynamics. The relation is analytically
confirmed in the case of two solvable models and could be experimentally challenged. Our results point out that
the inclusion of the environment as a part of the whole systemis important for micron- or nano-scale physics.

PACS numbers: 05.40.Jc, 05.20.Dd, 05.40.Ca 45.20.df

Introduction —Known as the thermal Casimir interactions
[1] or the Asakura-Oosawa interactions [2], a fluctuating en-
vironment can mediate static forces between the objects con-
stituting its borders. Through a unique combination of the
generalized Langevin equation and the linear response theory,
we uncover a link between such interactions and the corre-
lated Brownian motions with memory, both of which reflect
the spatiotemporal non-locality of the heat bath.

The more fine details of Brownian motion are experimen-
tally revealed, the more deviations from the idealized Wiener
process are found (see, for example, [3]). When two Brow-
nian particles are trapped close to each other in a heat bath
(see Fig.1), the random forces on those objects are no more
independent noises but should be correlated. Based on the
projection methods [4–6] we expect the generalized Langevin
equations to apply [7–10]:

MJ
d2XJ(t)

dt2
= −
∂U
∂XJ
−

2
∑

J′=1

∫ t

0
KJ,J′(t− τ)

dXJ′(τ)
dτ

dτ+ ǫJ(t), (1)

whereXJ (J = 1 and 2) are the position of the Brownian par-
ticles with the mass beingMJ, andKJ,J′(s) andǫJ(t) are, re-
spectively, the friction kernel and the random force.U(X1,X2)
is the static interaction potential between the Brownian parti-
cles. If the environment of the Brownian particles at the initial
time t = 0 is in canonical equilibrium at temperatureT, the
noise and the frictional kernel should satisfy the fluctuation-
dissipation (FD) relation of the second kind with the Onsager
symmetries [7, 11]:

〈ǫJ(t)ǫJ′ (t′)〉 = kBT KJ,J′(t − t′), (2)

KJ,J′(s) = KJ′,J(s) = KJ,J′(−s), (3)

whereJ and J′ are either 1 or 2 independently. This model
(1) is a pivotal benchmark model for the correlated Brownian
motion, although the actual Brownian motions could be more
complicated (see, for example, [3, 12]). But “the physical

J=1 J=2

FIG. 1. Two Brownian particles (filled disks,J = 1 and J = 2)
are trapped by an external potential, such as through optical traps
(vertical cones), and interact through both the direct and the heat
bath-mediated interactions.

meaning of the random force autocorrelation function is in this
case far from clear...” even now and “A proper derivation of
the effective potential could be of great help in clarifyingthis
last point” [10]. In addition to the bare potentialU0(X1,X2)
independent of the heat bath, the potentialU, which is in fact
the free energy as function ofXJ, may contain a bath-mediated
interaction potentialUb(X1,X2) so that

U(X1,X2) = U0(X1,X2) + Ub(X1,X2). (4)

In this Letter we propose the relation

K1,2(0) = −
∂

∂X1

∂

∂X2
Ub(X1,X2), (5)

where the both sides of this relation should be evaluated at the
equilibrium positions of the Brownian particles,XJ = 〈XJ〉eq.

This relation implies that the bath-mediated static interaction
is always correlated with the frictional one. Our approach is
to regard the heat bath as the weakly non-equilibrium system
which is both perturbed and sensed by the mesoscopic Brow-
nian particles. From this point of view (5) is deduced from so
called ‘general sum-rule theorem’ [13] of the linear response
theory of non-equilibrium statistical mechanics [14]. While
the FD relation of the second kind (2) is well known as an
outcome of this theory, the other aspects have not been fully
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explored. Below we give a general argument supporting (5),
and then give two analytically solvable examples for which
the claim holds exactly.

General argument —While the spatial dimensionality is
not restrictive in the following argument, we will use the no-
tations as if the space were one-dimensional. Suppose we ob-
serve the forceF1,2 on the J = 1 particle as we move the
J = 2 particle from〈X2〉eq at t = −∞ to X2(t) at t. Due to the
small perturbationX2(t)−〈X2〉eq, the average force at that time,
〈F1,2〉t, is deviated from its its equilibrium value,〈F1,2〉eq. The
linear response theory relates these two through the response
function,Φ1,2(s) as

〈

F1,2
〉

t−
〈

F1,2
〉

eq.=

∫ t

−∞

Φ1,2(t − τ) (X2(τ) − 〈X2〉eq)dτ. (6)

(Within the linear theory the force is always measured atX1 =

〈X1〉eq.) The complex admittanceχ1,2(ω) = χ ′1,2(ω)+ iχ ′′1,2(ω)
is defined as the Fourier-Laplace transformation ofΦ1,2(s) :

χ1,2(ω) =
∫

+∞

0
eiωs−εs

Φ1,2(s)ds, (7)

where ε is a positive infinitesimal number (i.e.,+0). If
χ1,2(∞) = 0, which is the case in the present , the causality
of Φ1,2(t), or the analyticity ofχ1,2(ω) in the upper half com-
plex plane ofω, impose the general sum rule [13],

P

∫

+∞

−∞

χ ′′1,2(ω)

ω

dω
π
= χ ′1,2(0), (8)

whereP on the left hand side (l.h.s.) denotes to take the prin-
cipal value of the integral acrossω = 0. The significance of
(8) is that it relates the dissipative quantity (l.h.s.) andthe re-
versible static response (right hand side (r.h.s.)) of the system.

Now we suppose, along the thought of Onsager’s mean re-
gression hypothesis [15], that the response of the heat bathto
the fluctuating Brownian particles, which underlies (1), ises-
sentially the same as the response to externally specified per-
turbations described by (6). Thus the comparison of (6) with
(1) gives

Φ1,2(t) = −
dK1,2(t)

dt
, (9)

or, in other words,K1,2 is the relaxation function correspond-
ing toΦ1,2. With this linkage between the Langevin descrip-
tion and the linear response theory, the static reversible re-
sponseχ′1,2(0) of the force〈F1,2〉 − 〈F1,2〉eq to the static dis-
placementX2 − 〈X2〉eq can be identified with the r.h.s. of (5).
As for the l.h.s. of (8), we can show by (9) and (7) that it is
equal toK1,2(0). The argument presented here is to be tested
both analytically/numerically and experimentally. At least for
the two models presented below the claim (5) is analytically
confirmed.

Solvable model I: Hamiltonian system—As the first ex-
ample that confirms the relation (5) we take up a Hamilto-
nian model inspired by the classic model of Zwanzig [8], see

Fig. 2(a). Instead of a single Brownian particle [8] we put the
two Brownian particles with massesMJ (J = 1, 2) which in-
teract with the ‘bath’ consisting of light mass ‘gas’ particles.
While Fig. 2(a) gives the general idea, the solvable model is
limited to the one-dimensional space. Each gas particle, e.g.
i-th one, has a massmi (≪ MJ) and is linked to at least one of
the Brownian particles,J = 1 or 2, through Hookean springs
of the spring constantmiω

2
i,J(> 0) and the natural length,ℓi,J.

In Fig. 2(a) these links are represented by the dashed lines.
The Hamiltonian of this purely mechanical model consists of
three parts,H = HB + Hb + HbB, with

HB =
P2

1

2M1
+

P2
2

2M2
+ U0(X1,X2), (10)

Hb =

∑

i

p2
i

2mi
, HbB =

∑

i

mi

2

2
∑

J=1

ω2
i,J(qi − XJ − ℓi,J)

2,

(11)
where the pairs (XJ,PJ =MJ dXJ/dt) and (xi , pi =mi dxi/dt)
denote, respectively, the positions and momenta of the heavy
(J) and light (i) particles. The Brownian particles obey the
following dynamics :

MJ
d2XJ

dt2
= −
∂U0

∂XJ
+

∑

i

miω
2
i,J(qi − XJ − ℓi,J). (12)

(a)

(b)

FIG. 2. (a) Hamiltonian model of two Brownian particles which is
analytically solvable for one dimensional space with harmonic cou-
pling. Each light mass particle (thick dot) is linked to at least one of
the Brownian particles (filled disks) with Hookean springs (dashed
lines). (b) Langevin model of two Brownian particles. Unlike the
Hamiltonian model, each light mass particle receives the random
force and frictional force from the background (shaded zone) and
its inertia is ignored.
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Given the initial values of (qi , pi) at t = 0, the Hamilton
equations for (qi(t), pi(t)), which reads

mi
d2qi

dt2
= −mi

2
∑

J=1

ω2
i,J(qi − XJ(t) − ℓi,J), (13)

can be solved in supposing that the histories ofXJ(s) (J =
1 and 2) for 0≤ s≤ t are given. In order to assure the compat-
ibility with the initial canonical equilibrium of the heat bath,
we assume the vanishing initial velocity for the Brownian par-
ticles, dXJ/dt|t=0 = 0. Substituting eachqi in (12) by its for-
mal solution thus obtained, the dynamics ofXJ(t) is rigorously
reduced to (1), where the friction kernelsKJ,J′(s) are

KJ,J′(s) =
∑

i

miω
2
i,Jω

2
i,J′

ω̃2
i

cos(ω̃i s), (14)

and the noise termǫJ(t) is

ǫJ(t) ≡
∑

i

miω
2
i,J

{

q̃i(0) cos(ω̃i t) +
dq̃i(0)

dt
sin(ω̃i t)
ω̃i

}

, (15)

with ω̃2
i ≡ ω

2
i,1 + ω

2
i,2 and

q̃i(t) ≡ qi(t) −
2
∑

J=1

ω2
i,J

ω̃i
[ℓi,J + XJ(t)]. (16)

To our knowledge this is the first concrete model that demon-
strates (1). Only those gas particles linked to the both Brow-
nian particles satisfyω2

i,1ω
2
i,2 > 0 and contribute toK1,2(s).

While the generalized Langevin form (1) holds for an indi-
vidual realization without any ensemble average, the statis-
tics of ǫJ(t) must be specified. We assume that att = 0
the bath variables ˜qi(0) andp̃i(0) (=pi(0) because we defined
dXJ/dt|t=0 = 0) belong to the canonical ensemble of a tem-
peratureT with the weight∝ exp(−(Hb + HbB)/kBT). Then
the noisesǫJ(t) satisfy the FD relation of the second kind (2).
and the Onsager symmetries (3).

In this solvable model, the heat bath-mediated static poten-
tial Ub which supplementsU0 to makeU = U0 + Ub is found
to be

Ub(X1 − X2) =
kb

2
(X1 − X2−Lb)2, (17)

where

kb =

∑

i

miω
2
i,1ω

2
i,2

ω̃2
i

, Lb =
1
kb

∑

i

miω
2
i,1ω

2
i,2(ℓi,1 − ℓi,2)

ω̃2
i

.

(18)
Note thatUb depends onX1 andX2 only throughX1−X2, that
is, it possesses the translational symmetry (see later). While
this form appears in the course of deriving (1), its origin can
be simply understood from the following identity:

HbB =

∑

i

miω̃
2
i

2
q̃2

i + Ub(X1 − X2). (19)

Finally, our claim (5) is confirmed by (14) forK1,2(0) and by
(17) and (18) for theU ′′b (X) = kb. In the standard language of
the linear response theory, the ‘displacement’A conjugate to
the external parameterX2(t)−〈X2〉eq is A =

∑

i miω
2
i,2(qi−X2−

ℓi,2) and the flux as the response isB =
∑

i miω
2
i,1(qi −X1−ℓi,1)

[14]. Direct calculation givesχ1,2(ω) =
∑

i(miω
2
i,1ω

2
i,2)/[ω̃2

i −

(ω + iε)2].
A remark is in order about the translational symmetry of

Ub(X). In the original Zwanzig model [8], the factor corre-
sponding toqi − XJ − ℓi,J in (11) wasqi − ciXJ with an ar-
bitrary constantci and the natural lengthℓi,J set to be zero
arbitrarily. In order that the momentum in the heat bath is lo-
cally conserved around two Brownian particles, we needed to
setci = 1 and explicitly introduce the natural lengthℓi,J, es-
pecially for those gas particles which are coupled to the both
Brownian particles, i.e. withω2

i,1ω
2
i,2 > 0. We note that the

so-called dissipative particle dynamics modeling [16–18]also
respects the local momentum conservation.

Solvable model II: Langevin system.—The second example
that confirms the relation (5) is constructed by modifying the
first one, see Fig. 2(b). There, we replace the Hamiltonian
evolution of each light mass particle (13) by the over-damped
stochastic evolution governed by the Langevin equation;

0 = −γi
dqi

dt
+ ξi(t) −mi

2
∑

J=1

ω2
i,J(qi − ℓi,J − XJ(t)), (20)

whereγi is the friction constant with which thei-th gas par-
ticle is coupled to a ‘outer’-heat bath of the temperatureT.
ξi(t) is the Gaussian white random force from the outer-heat
bath obeying〈ξi(t)〉 = 0, and〈ξi(t)ξi′ (t′)〉 =2γikBTδ(t − t′)δi,i′ .
This outer-heat bath may represent those degrees of freedom
of the whole heat bath which are not directly coupled to the
Brownian particles, while the variables (qi , pi) represent those
freedom of our primary interest as the ‘system’. (Similar idea
has already been proposed in different contexts, see [19] §6.3
and §7.1, and also [20–22].) Integrating (20) forqi(t) and sub-
stituting the result into the r.h.s. of (12), we again obtain(1)
and (2) with the same bath-mediated static potential as before,
i.e.,Ub defined by (17) and (18). (In this over-damped model,
miω

2
i,J simply represents the spring constant between thei-th

light mass and theJ-th Brownian particle.) The friction kernel
and the noise term of the present model are, however, differ-
ent: instead of (14) and (15), they read, respectively,

KJ,J′(s) =
∑

i

miω
2
i,Jω

2
i,J′

ω̃2
i

e−
|s|
τi , (21)

ǫJ(t) =
∑

i

miω
2
i,J

∫ ∞

0

e−
s
τi

γi
ξi(t − s)ds, (22)

whereτi = γi/(miω̃
2
i ). Because the form ofK1,2(0) as well as

Ub(X) are unchanged from the first model, our claim (5) is
again confirmed.
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Discussion : Implication of (5) —Being consistent with
this relation, no bath-mediated interactions appeared in the
phenomenological approaches [23–25] where the Stokesian
fluid model is supplemented by the thermal random forces sat-
isfying the FD relation, because the bath had no memory.

The above solvable models, though being artificial, repre-
sent certain non-local aspects of the more realistic heat baths.
The cross frictional kernelK1,2(s) and the bath mediated po-
tential Ub(X) are generated by those microscopic degrees of
freedom which couple to both the Brownian particles. This
picture is reminiscent of the quantum system interacting with
electromagnetic fields (see, for example, [26]).

From operational point of view, the relation (5) implies that
we cannot control the friction kernels or friction coefficients
without changing the bath-mediated interaction between the
Brownian particles. As a demonstration, if all theωi,J of the
light particles are changed by a multiplicative factorλ, i.e.
ωi,J 7→ λωi,J, then bothKJ,J′(s) andUb(X) should be changed
to λ2KJ,J′(λs) andλ2Ub(X), respectively.

Especially about the workW of operations, (5) implies that
the workWK to change the off-diagonal friction kernelK1,2

cannot be isolated from the workWU to change the bath-
mediated interaction potential,Ub. In the above solvable mod-
els, the total work,W = WK +WU , to change the parameters,
{ωi,J}, can be given as the Stieltjes integrals along the time-
evolution of the whole degrees of freedom:

W =
∑

i

2
∑

J=1

∫

Γ

∂HbB

∂ωi,J
dωi,J(t), (23)

where
∫

Γ
indicates to integrate along the process where all the

dynamical variablespi′ , q̃i′ andXJ in the integrals evolves ac-
cording to the system’s dynamics under time dependent pa-
rameters{ωi,J}. The operational inseparability of the work
into WK and WU justifies the fact that, on the level of the
stochastic energetics [19], we could not access the work to
change the friction coefficients. On the microscopic level,
however, the above models allow to identifyWK : First WU

is given by the above framework [19]:

WU =

∑

i

2
∑

J=1

∫

Γ

∂Ub

∂ωi,J
dωi,J(t), (24)

becauseU0 does not depend onωi,J.Combining (24) with (23)
as well as the identity (19), the kinetic part of the work,WK ,

is found to be

WK =

∑

i

2
∑

J=1

∫

Γ

∂

∂ωi,J















∑

i′

mi′ω̃
2
i′

2
q̃2

i′















dωi,J(t), (25)

whereq̃i are defined in (16). The result again shows that, un-
less we have an access to the microscopic fluctuations in the
heat bath,WK is not measurable.

In conclusion we propose, with supporting examples, that a
bath-mediated effective potential between the Brownian parti-
cles,Ub, should accompany the off-diagonal frictional mem-
ory kernel,K1,2(s), with a particular relation (5) due to the
general sum rule of the linear response theory. This relation
should be tested experimentally and/or numerically on the one
hand, and the generalization to other models [3, 12] should
be explored on the other hand. For example, in the reaction
dynamics of protein molecules or of colloidal particles, non-
local fluctuations of the solvent may play important roles both
kinetically and statically. The consciousness of the environ-
ment as a part of the whole system is important not only in the
ecology but also at the micron- or nano-scale physics.
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Raizen, and E. Florin, Nature Physics7, 576 (2011).

[4] H. Mori, Prog. Theor. Phys.33, 423 (1965).
[5] R. Zwanzig, J. Chem. Phys.33, 1338 (1960).
[6] R. Zwanzig, Phys. Rev.124, 983 (1961).
[7] K. Kawasaki, J. Phys. A6, 1289 (1973).
[8] R. Zwanzig, J. Stat. Phys.9, 215 (1973).
[9] R. Zwanzig, Nonequilibrium Statistical Mechanics(Oxford

University Press, London, 2001).
[10] G. Ciccotti and J.-P. Ryckaert, J. Stat. Phys.26, 73 (1980).
[11] S. Nordholm and R. Zwanzig, J. Stat. Phys.13, 347 (1975).
[12] L. Bocquet and J. Piasecki, J. Stat. Phys.87, 1005 (1997).
[13] R. Kubo, Journal of the Physical Society of Japan12, 570 (1957).
[14] R. Kubo, M. Toda, and N. Hashitsume,Statistical physics II :

nonequilibrium statistical mechanics, 2nd ed. (Springer-Verlag,
Berlin, 1991).

[15] L. Onsager, Phys. Rev.38, 2265 (1931).
[16] P. Hoogerbrugge and K. Koelman, Europhys. Lett.19, 155

(1992).
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