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Non-equilibrium statistical mechanics of the heat bath for two Brownian particles
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We propose a new look at the heat bath for two Brownian pagjch which the heat bath as a ‘system’ is both
perturbed and sensed by the Brownian particles. Non-lbeairial fluctuation give rise to bath-mediated static
forces between the particles. Based on the general sunofrthe linear response theory, we derive an explicit
relation linking these forces to the friction kernel debirg the particles’ dynamics. The relation is analytically
confirmed in the case of two solvable models and could be eaxpatally challenged. Our results point out that
the inclusion of the environment as a part of the whole syssemportant for micron- or nano-scale physics.
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Introduction —Known as the thermal Casimir interactions
[E] or the Asakura-Oosawa interactiohs [2], a fluctuating en
vironment can mediate static forces between the objects con
stituting its borders. Through a unique combination of the
generalized Langevin equation and the linear responseytheo
we uncover a link between such interactions and the corre-
lated Brownian motions with memory, both of which reflect
the spatiotemporal non-locality of the heat bath.

The more fine details of Brownian motion are experimen-F|G. 1. Two Brownian particles (filled disks] = 1 andJ = 2)
tally revealed, the more deviations from the idealized \WWien are trapped by an external potential, such as through optaas
process are found (see, for examp@, [3]). When two BrowA{vertical cones), and interact through both the direct dved teat
nian particles are trapped close to each other in a heat baffth-mediated interactions.

(see Fid.1), the random forces on those objects are no more

independent noises but should be correlated. Based on t.h]r?eaning of the random force autocorrelation function isis t

prole;:_tlon :netholch ‘E_Eg \_Ne expect the generalized I“’Jlmge\”case far from clear...” even now and “A proper derivation of
equations o app I the effective potential could be of great help in clarifyiiis

42 U & q last point” [10]. In addition to the bare potentidh(X1, X2)
M Xlz(t) =—— —Z fKJ,J’ (t-1) % (r) dr+e(t), (1) independent of the heat bath, the poteritiaihich is in fact
dt 9%y y=1v0 dr the free energy as function &f;, may contain a bath-mediated

N ] interaction potential,(Xy, X2) so that
whereX; (J = 1 and 2) are the position of the Brownian par-

ticles with the mass beiniyl;, andK; 5 (s) ande;(t) are, re- U (X1, X2) = Uo(X1, X2) + Up(Xg, Xo). (4)
spectively, the friction kernel and the random forog Xy, Xz)
is the static interaction potential between the Browniartipa In this Letter we propose the relation
cles. If the environment of the Brownian particles at th&ahi
timet = 0 is in canonical equilibrium at temperatufe the K12(0) = _iiu (X1, X2) (5)
1,2 b\AL, \2),
noise and the frictional kernel should satisfy the fluctati ’ 09Xy 09Xz
dissipatiqn ﬁTD relation of the second kind with the Onsage, ore the hoth sides of this relation should be evaluatetkat t
symmetries 1I: equilibrium positions of the Brownian particle$; = (Xj)eq.
(e&(0ex () = ke T Koy (t - 1), ) This relation implies that the bath-mediated static irttoa

is always correlated with the frictional one. Our approach i
to regard the heat bath as the weakly non-equilibrium system
Ky (9) = Ky .3(9) = Ky 3(-9), (3)  which is both perturbed and sensed by the mesoscopic Brow-
nian particles. From this point of viewl(5) is deduced from so
whereJ and J’ are either 1 or 2 independently. This model called ‘general sum-rule theorerE[13] of the linear resgmn
(@) is a pivotal benchmark model for the correlated Browniantheory of non-equilibrium statistical mechani[14]. \l¢hi
motion, although the actual Brownian motions could be morghe FD relation of the second kinfl (2) is well known as an
complicated (see, for examplé] 12]). But “the physicaloutcome of this theory, the other aspects have not been fully
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explored. Below we give a general argument supporfihg (5)Fig.[2(a). Instead of a single Brownian partidﬂa [8] we putt th

and then give two analytically solvable examples for whichtwo Brownian particles with masséé; (J = 1, 2) which in-

the claim holds exactly. teract with the ‘bath’ consisting of light mass ‘gas’ palki
General argument —While the spatial dimensionality is While Fig.[2(a) gives the general idea, the solvable model is

not restrictive in the following argument, we will use the-no limited to the one-dimensional space. Each gas partide, e.

tations as if the space were one-dimensional. Suppose we obth one, has a mass (<« Mj;) and is linked to at least one of

serve the forcé=1, on theJ = 1 particle as we move the the Brownian particles] = 1 or 2, through Hookean springs

J = 2 particle from(Xz)eq att = —oo to Xp(t) att. Due to the  of the spring constanna)fJ(> 0) and the natural lengtl; ;.

small perturbatioiXa(t)—(Xz)eq, the average force at thattime, In Fig.[2(a) these links are represented by the dashed lines.

(F12)t, is deviated fromits its equilibrium valuéf-1 2)eq. The  The Hamiltonian of this purely mechanical model consists of

linear response theory relates these two through the responthree partsH = Hg + Hp, + Hpg, with

function,®1 ,(s) as

2 2
t HB = Zi + Zi + Uo(xl, Xz), (10)
(Fio)— (Fiodeq f D1t - 7) (Xalr) = (Xedegdr. () My 2M;

(Within the linear theory the force is always measurexat p? m 2
(X1)eq.) The complex admittange, »(w) = x ; ,(w) + ix{,(w) Hp = Z ﬁ Hog = Z > Z Wl (0 = Xy = 6.9)%,
is defined as the Fourier-Laplace transformatio®g3(s) : [ i J=1

(11)
s where the pairsX;, P; =M dX;/dt) and ¢, pi =m dx/dt)
x12(w) = ﬁ e D12(s)ds (7)  denote, respectively, the positions and momenta of theyheav

(J) and light {) particles. The Brownian particles obey the
where ¢ is a positive infinitesimal number (i.e40). If  following dynamics:
x12(o0) = 0, which is the case in the present , the causality

of @4 5(t), or the analyticity of in the upper half com- d?X; 0Ug
12(0) yticity ofva.2(w) bp Moge =3 T Mm@ X -6 (12)

plex plane ofw, impose the general sum rule [13], dt?
+°°/\/i,2(w) dw
P = x1,(0), 8
j_\oo w T X1,2( ) ( ) (a)

where® on the left hand side (I.h.s.) denotes to take the prin-

cipal value of the integral across = 0. The significance of

(@) is that it relates the dissipative quantity (1.h.s.) dm&lre-

versible static response (right hand side (r.h.s.)) of yiséesn.
Now we suppose, along the thought of Onsager’'s mean re- ¢

gression hypothesiﬂllS], that the response of the heatbath

the fluctuating Brownian particles, which underligk (1)e$s

sentially the same as the response to externally specified pe (b)

turbations described b{fl(6). Thus the comparisofiof (6) with

(@ gives

dKyo(t)
dat ’

or, in other wordsKj ; is the relaxation function correspond-

ing to @, . With this linkage between the Langevin descrip- ¢

tion and the linear response theory, the static reversisle r

sponse(’lyz(O) of the force(F12) — (F12)eq to the static dis-

placemeniX; — (Xz)eq can be identified with the r.h.s. dfl(5).

As for the L.h.s. of[(B), we can show byl (9) and (7) that it is

equal tOKl’?(O)' The arg_ument presente_d here is to be teste nalytically solvable for one dimensional space with harim@ou-

both analytically/numerically and experlmentall)_/. At%a‘pr pling. Each light mass particle (thick dot) is linked to eadeone of

the two models presented below the claith (5) is analyticallfthe Brownian particles (filled disks) with Hookean springaghed

confirmed. lines). (b) Langevin model of two Brownian particles. Unlike the
Solvable model I: Hamiltonian systemAs the first ex- Hamiltonian model, each light mass particle receives timeloe

ample that confirms the relatiofll (5) we take up a Hamilto-force and frictional force from the background (shaded yamel

nian model inspired by the classic model of ZwanZlg [8], sed!S inertiais ignored.

@15(t) = -

(9)

IG. 2. (a) Hamiltonian model of two Brownian particles which is



Given the initial values ofdj, p;) att = 0, the Hamilton
equations ford(t), pi(t)), which reads

d2q;

2
Mg =M JZ{ Wl (G = Xo() = 6.9), (13)

can be solved in supposing that the histories<efs) (J =

1 and 2) for O< s < tare given. In order to assure the compat-

ibility with the initial canonical equilibrium of the heatlth,
we assume the vanishing initial velocity for the Brownian-pa
ticles, dXj/dtl.—o = 0. Substituting eacly; in (I12) by its for-
mal solution thus obtained, the dynamicsq(t) is rigorously
reduced to[{l1), where the friction kernéds y (s) are

2 2
Kir(9= Y S o, (14)
and the noise terrg(t) is
&0 = Y med 2 {0 costiy + S EDL s
with &? = w?, + w?, and
2 2
a0 =a0 - ) = 6+ X (16)
o1 Wi

To our knowledge this is the first concrete model that demon-
strates[(]L). Only those gas particles linked to the both Brow

nian particles satisfy,?,w?, > 0 and contribute td »(s).
While the generalized Langevin forrl (1) holds for an indi-
vidual realization without any ensemble average, thesstati
tics of €;(t) must be specified. We assume thattat 0
the bath variableg;(0) andg(0) (=pi(0) because we defined

dX;/dt,—o = 0) belong to the canonical ensemble of a tem-

peratureT with the weight« exp(~(Hp + Hpg)/ksT). Then
the noises;(t) satisfy the FD relation of the second kirid (2).
and the Onsager symmetri€s (3).

In this solvable model, the heat bath-mediated static pote
tial U, which supplementtly to makeU = Ug + Uy, is found
to be

Up(Xe - Xo) = %(xl ~ Xo-Lp)?, (17)

where

mw, 1a)| z(fl 1— gl 2)

(18)
Note thatU, depends oiX; andX; only throughX; — X», that
is, it possesses the translational symmetry (see laterjleWh
this form appears in the course of derivifig) (1), its origin ca
be simply understood from the following identity:

ma?
Hog = ) —50f + Us(Xs ~ Xo). (19)
i

3

Finally, our claim [(5) is confirmed by (14) fdf, »(0) and by
(17) and[(IB) for théJ,” (X) = ky. In the standard language of
the linear response theory, the ‘displaceméntonjugate to
the external paramete®h(t) — (Xo)eqis A = 3 mwfz(Qi —Xo—
ti») and the flux as the responseBis= }; mwfl(Qi —X1—"ti1)
[14]. Direct calculation giveg: »(w) = Ti(mw? w?)/[@f -
(w+ig)?].

A remark is in order about the translational symmetry of
Up(X). In the original Zwanzig mode[[8], the factor corre-
sponding tog — X3 — £ in (@) wasqg; — ¢ X; with an ar-
bitrary constant; and the natural lengthi ; set to be zero
arbitrarily. In order that the momentum in the heat bath is lo
cally conserved around two Brownian particles, we needed to
setc; = 1 and explicitly introduce the natural lengtty, es-
pecially for those gas particles Which are coupled to thé bot
Brownian particles, i.e. witlw? 1w , > 0. We note that the
so-called dissipative particle dynamics modeling [16-8b
respects the local momentum conservation.

Solvable model Il: Langevin systemFhe second example
that confirms the relatiofi}(5) is constructed by modifying th
first one, see Fid.]12(b). There, we replace the Hamiltonian
evolution of each light mass partic[e{13) by the over-dadhpe
stochastic evolution governed by the Langevin equation;

0=~y +&(M) - me.J(q. ba=X),  (20)

7| dt

wherey; is the friction constant with which thieth gas par-

ticle is coupled to a ‘outer’-heat bath of the temperafire

&(t) is the Gaussian white random force from the outer-heat
bath obeyingi(t)) = 0, and(&i(t)éi (t')) =2yikg To(t — '),

This outer-heat bath may represent those degrees of freedom
of the whole heat bath which are not directly coupled to the
Brownian particles, while the variableg (p;) represent those
freedom of our primary interest as the ‘system’. (Similaad

has already been osed in different contexts, sée [19] 86
and 87.1, and als&b 22].) Integratifigl(20) ddit) and sub-

(stituting the result into the r.h.s. df{12), we again obin

and [2) with the same bath-mediated static potential agbefo
i.e.,Up defined by[(II7) and (18). (In this over-damped model,
mwﬁ ; Simply represents the spring constant betweeri-the
light mass and thé-th Brownian particle.) The friction kernel
and the noise term of the present model are, however, differ-
ent: instead of(14) and{lL5), they read, respectively,
Mafywly s

Kir(9=),—5er,

(21)

(22)

e(t) = me&fo %Si(t—S)ds

wherer; = yi/(m&iz). Because the form df;2(0) as well as
Up(X) are unchanged from the first model, our clalth (5) is
again confirmed.
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Discussion : Implication of{5) —Being consistent with In conclusion we propose, with supporting examples, that a
this relation, no bath-mediated interactions appearedhén t bath-mediated effective potential between the Browniatipa
phenomenological approach[@—ZS] where the Stokesiaties, Uy, should accompany the off-diagonal frictional mem-
fluid modelis supplemented by the thermal random forces sary kernel, Ky »(s), with a particular relation[{5) due to the
isfying the FD relation, because the bath had no memory. general sum rule of the linear response theory. This relatio

The above solvable models, though being artificial, represhould be tested experimentally and/or numerically on ttee o
sent certain non-local aspects of the more realistic hehsba hand, and the generalization to other modelis [3, 12] should
The cross frictional kernef (s) and the bath mediated po- be explored on the other hand. For example, in the reaction
tential Up(X) are generated by those microscopic degrees oflynamics of protein molecules or of colloidal particlespno
freedom which couple to both the Brownian particles. Thislocal fluctuations of the solvent may play important rolethbo

picture is reminiscent of the quantum system interactirth wi Kinetically and statically. The consciousness of the emsr
electromagnetic fields (see, for exam [26]). ment as a part of the whole system is important not only in the

From operational point of view, the relatidd (5) impliesttha ecolqu but a_lso at the micron- or nan_o-scal_e phy;u;s.
we cannot control the friction kernels or friction coefficte This work is supported by the Marie Curie Training Net-
without changing the bath-mediated interaction between th"Wo'k NETADIS (FP7, grant 290038) for CDB. KS acknowl-
Brownian particles. As a demonstration, if all the; of the edges Antome.FruIeux for fruitful Q|§cus§|ons. CDB and KS
light particles are changed by a multiplicative factori.e. thank ICTP (Trieste, I.taly) for providing with the opporign
wi y — dwi g, then bothK; 5 (s) andUy(X) should be changed to start the collaboration.
to 12K ;3 (18) andA?Up(X), respectively.

Especially about the work/ of operations [{5) implies that
the work Wy to change the off-diagonal friction kernk »

cannot be isolated from the wolkl, to change the bath-
mediated interaction potenti&J,. In the above solvable mod-
els, the total workW = Wk + Wy, to change the parameters,
{wi 3}, can be given as the Stieltjes integrals along the time-
evolution of the whole degrees of freedom:

w33 |

i J=1

OHpp
&ui,J

dwi 5(t), (23)

wherefr indicates to integrate along the process where all thel9

dynamical variablegy, g andX; in the integrals evolves ac-
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