
Community detection and anomaly prediction in dynamic networks

Hadiseh Safdari1, ∗ and Caterina De Bacco1, †

1Max Planck Institute for Intelligent Systems, Cyber Valley, Tuebingen 72076, Germany

Abstract

Anomaly detection is an essential task in the analysis of dynamic networks, as it can provide early warning of
potential threats or abnormal behavior. We present a principled approach to detect anomalies in dynamic networks
that integrates community structure as a foundational model for regular behavior. Our model identifies anomalies as
irregular edges while capturing structural changes. Leveraging a Markovian approach for temporal transitions and
incorporating structural information via latent variables for communities and anomaly detection, our model infers these
hidden parameters to pinpoint abnormal interactions within the network. Our approach is evaluated on both synthetic
and real-world datasets. Real-world network analysis shows strong anomaly detection across diverse scenarios. In a
more specific study of transfers of professional male football players, we observe various types of unexpected patterns
and investigate how the country and wealth of clubs influence interactions. Additionally, we identify anomalies between
clubs with incompatible community memberships, but also instances of anomalous transactions between clubs with
similar memberships. The latter is due in particular to the dynamic nature of the transactions, as we find that the
frequency of transfers results in anomalous behaviors that are otherwise expected to interact as they belong to similar
communities.

I. Introduction

Dynamic networks are ubiquitous in real-world applications, ranging from social networks to biological systems and
transportation networks [1, 2]. As these networks evolve over time, detecting anomalies in the networks becomes in-
creasingly important for identifying critical events, predicting failures, and uncovering hidden patterns [3–5]. Anomaly
detection in dynamic networks involves identifying objects (nodes, edges, subgraphs) that deviate significantly from
the expected behavior of the network, given its past behavior. This process enables the detection of irregularities that
may be indicative of important changes or abnormalities within the network structure or dynamics. For instance,
network intrusions can result in confidential personal information being leaked to hackers. By utilising anomaly detec-
tion techniques, one can acquire a more profound understanding of the behavior and evolution of dynamic networks,
allowing informed decision-making and necessary courses of action [6, 7].

Current approaches to detecting anomalies in dynamic graphs include machine-learning techniques, and graph-based
algorithms [3, 8–11]. Although deep learning methods show potential in handling the complexity of graph data, they
are not without limitations [3]. A significant obstacle is the models’ lack of interpretability, which leads to challenges
in understanding the reasoning behind anomaly detection decisions, an essential aspect in applications that require
explanations.

Moreover, these models heavily rely on large labeled datasets for effective training, which becomes impractical in
dynamic network environments due to the laborious and expensive process of data collection and labeling. Further-
more, the high computational complexity of deep learning models poses a barrier to real-time anomaly detection in
dynamic networks, where timely identification is of utmost importance. In addition, many dynamic graph anomaly
detection techniques in deep learning rely on models like DeepWalk [12], and GCN [13] that are primarily designed
for static graphs. As a result, they do not effectively utilize evolving patterns in attributes for the detection task [3].

In addition to deep learning techniques, graph-based anomaly detection techniques, where nodes and edges represent
objects and their relationships, have also been explored for anomaly edge detection in dynamic networks [3]. However,
previous works in this area, which rely on statistical models, often face limitations in accurately identifying unknown
anomalies and struggle with scalability issues in large networks. As the complexity and scale of dynamic networks
continue to grow, there is an increasing need for principled approaches that can improve both the accuracy and
efficiency of anomaly detection. Furthermore, the models in this category do not incorporate anomalies in a systematic
way, as part of the data structure [14, 15].
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In this paper, we introduce a principled approach that combines community detection and anomaly prediction,
to learn patterns of regular behavior in the network structure and identify deviations, i.e., anomalous behavior. In
many complex networks, nodes are clustered into communities of similar nodes [16–18]. For example, in transportation
networks, communities might be clusters of closely connected airports, showing busy routes or regional hubs. Similarly,
in online social networks, communities might be groups of users with shared interests or frequent interactions. These
communities reveal how the network is organized and how its members interact. They help us understand the structure
and functions of the underlying networks. Here, we exploit these insights to encode regular behavior in a probabilistic
generative model for networks by means of community structure that evolve over time. By encoding deviations from
this behavior as anomalies, we are able to estimate the probability that a certain edge is anomalous while also learning
the hidden community structure.

The incorporation of community membership in this setting presents advantages over traditional anomaly detection
methods [3, 8, 19]. For instance, by focusing on specific communities within the network, our approach can provide
more targeted and accurate anomaly detection, as anomalies often manifest within localized regions rather than
affecting the entire network. On the other hand, an evolving community structure can explain the underlying dynamics
of the network effectively [20–22], enabling us to detect anomalies even in the absence of prior knowledge about specific
anomaly types.

In this work we develop a probabilistic approach for modelling dynamic networks with anomalous edges, termed
DynACD, where nodes remain fixed, and edges appear and disappear. Nodes have community memberships that
determine the regular behavior of edge formation over time. The model estimates both community structure and the
probability that an edge is anomalous.

We evaluate the effectiveness of our approach on real-world datasets and demonstrate its ability to accurately detect
anomalous events in dynamic networks. By studying a dataset of players transfers between professional men football
clubs, we find a variety of anomalous behaviors, ranging from anomalies appearing between clubs with compatible
community structure but unusual frequency of transfers, or between clubs that have incompatible communities.
Finally, we illustrate a potential application relevant for data collection procedures that require an initial preprocessing
steps, showing how our model can be used to flag potential errors caused by mislabeling of nodes.

II. Model: Dynamic DynACD

We observe pairwise interactions between individual nodes over time, which we represent using a time-dependent
adjacency matrix Aij(t). In this work, we focus on binary directed temporal networks, meaning that Aij(t) = 1, 0
indicates the existence of an edge from node i to j at time step t, or not, respectively.

To model the structure of temporal networks, we adopt a continuous-time Markov process approach similar to
[23, 24]. We assume that the appearance and disappearance of edges are continuous events that occur on real-valued
timescales. However, since our observations are discrete, we track the network at discrete time steps, t = 0, 1, ..., T .

We define a binary variable (or label) Zij ∈ {0, 1} to classify anomalous edges: if Zij = 1, then the pair of edges
(i, j), (j, i) is anomalous, it is regular otherwise. This is a static quantity, as in this work, we focus on the scenarios
where the status (or label) of a pair of nodes is either anomalous or not. We assume this not to change in time, while
edges can appear and disappear based on their label. We also consider it to be symmetric, i.e., Zij = Zji, as we
assume that an anomaly involves a given pair of nodes, regardless the direction of an edge (but Aij(t) is in general
asymmetric, to model more generally directed networks). This label Zij is not known a priori, it is a latent variable
that we need to learn from data, together with the other parameters of the model.

With this in mind, we express the likelihood of the existence of the edge (i, j) at time step t = 0, given a set of
latent variables Θ as:

P (Aij(0)|Θ) = Pois(Aij(0);λij(0))
1−Zij Pois(Aij(0);π)

Zij , (1)

where π is a constant and the hyper-parameter µ ∈ [0, 1] regulates the prior distribution of Z,

Zij ∼ Bern(µ) . (2)

In other words, at an initial time step t = 0, a Poisson distribution with mean π governs the probability of an
anomalous edge at the initial time step. Instead, the existence of a regular edge between nodes i, j is dictated by a
Poisson distribution with mean λij(0). This parameter depends only on the communities to which the nodes belong,
according to a mixed-membership model [25]:

λij(0) =
∑
k,q

uikvjq wkq(0) . (3)
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The K-dimensional vectors ui and vi represent the out-going and in-coming communities of nodes i, respectively. The
K ×K affinity matrix, with entries wkq(0) plays a crucial role in regulating the community structure of the network.
When the diagonal entries exceed the off-diagonal entries, it promotes assortativity and increases the likelihood of
edges connecting nodes within the same community. The number of communities K is a hyper-parameter that needs
to be selected with model selection criteria. In our experiments here we use 5-fold cross-validation.
Given the probability of the network at the initial time step, and the labels of edges Zij , we now proceed with the
evolution in time of Aij(t), ∀t = 1, . . . , T . We consider a Markov process to approximate the trajectory in time as:

P ({A(t)}|Θ) =
∏
i,j

{
P (Aij(0)|Θ)×

T∏
t=1

{P (Aij(t)|Aij(t− 1),Θ)}

}
.

The dynamic is determined by the transition probability, that we assume factorized as

P (Aij(t)|Aij(t− 1),Θ) = [Pa(Aij(t)|Aij(t− 1),Θ)]
Zij × [Pr(Aij(t)|Aij(t− 1),Θ)]

1−Zij , (4)

where the subscripts a, r denote the evolution of an anomalous or regular edge, respectively. In this work, we assume
that at each time-step, regular edges appear with rate λij(t) =

∑
k,q uikvjq wkq(t), and disappear with rate γ, while

anomalous edges appear and disappear with the rates ℓ and ζ, respectively. Hence, to fully build the time evolving
probability of the node pairs, it becomes essential to estimate the transition rates that govern the appearance and
disappearance of both regular and anomalous edges over time.
In line with the methodology employed by Zhang et al. [19, 24], we adopt a similar approach to compute the
probability of edge existence. This involves solving a master equation that governs the evolution of the presence of
edges, including both regular and anomalous ones (refer to Secs. S1 and S2 for more details).
By solving the master equation for the edge probability outlined in Eq.(S1), the transition rates specified in Eq. (S3)
can be derived based on the model parameters denoted by Θ ≡ {u, v, w, β, µ, π, ϕ, ℓ}, see Eq. (S4). Hence, we are
equipped to finalize the posterior computation for the edges, as articulated in Eq. (S5).
The goal of our study is to learn the hidden parameters of the model, Θ, based on the adjacency matrices observed at
each time step {A(t)}Tt=0. To accomplish this objective, we perform an inference task by maximizing the log-posterior
of the parameters given the data (refer to Sec. S3 for additional details).
An important quantity that we are able to estimate in closed-form is the the posterior distribution of the labels
P (Zij | {Aij(t)}Tt=0 , θ), and in particular the expected value E[Zij ] = Qij ∈ [0, 1]. Other methods, e.g., approaches
based on deep learning and embeddings, do not have a straightforward way to estimate this; hence, they need to make
use of ad-hoc choices to classify anomalies a posteriori using proxies for this quantities (see Sec. S9 for a detailed
discussion). In our case, the Zij are encoded explicitly in our model.
We made some main assumptions about the temporal dynamics of the model parameters. We consider the affinity
matrix as a variable dependent on time, while keeping the community membership vectors ui and vi static over
time. It is worth noting that an alternative perspective can be achieved by keeping w fixed and permitting changes
in the community membership vectors over time [22]. Either of these approaches allow the community structure to
evolve dynamically impacting edge formation in time via the parameter λij(t). Our model assumes a fixed number
of communities K, yet employs a mixed-membership model to assign nodes to multiple communities with varying
intensities. This allows to effectively capture the likelihood of the data by adjusting how an entry uik or vik impacts
the magnitude of λij(t) via w(t), while maintaining K constant. An overview of the algorithm to estimate the hidden
parameters of the model is described in Algorithm 1.
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Algorithm 1 DynACD: EM algorithm.
Input: network A(t) = {Aij(t)}Ni,j=1, t = 0, . . . , T

number of communities K.
Output: membership u = [uik] , v = [vik]; network affinity matrix w(t) = [wkq(t)]; regular edge disappearance

rate β(t); mean value of Poisson anomaly distribution π; prior on anomaly indicator µ; anomalous edge
disappearance rate ϕ, and ℓ.

Initialize u, v, w(t), β, µ, π, ϕ, ℓ at random.
Repeat until L converges:

1. Calculate ρ and Q (E-step):

ρij(t) =
uikvjqwkq(t)∑
k,q uikvjqwkq(t)

,

Qij ∼ as in Eq.(S30) .

2. Update parameters Θ (M-step):
i) for each node i and community k update memberships:

uik =

∑
j,q [1−Qij ]

∑T
t=0 ρijkq(t) Âij(t)∑

j,q vjq [1−Qij ]
∑T

t=0 β̂(t)wkq(t)
,

vik =

∑
j,q [1−Qij ]

∑T
t=0 ρijkq(t) Âji(t)∑

j,q ujq [1−Qij ]
∑T

t=0 β̂(t)wkq(t)
,

ii) for each pair (k, q) update affinity matrix:

wkq(t) =

∑
i,j [1−Qij ] ρijkq Âij(t)∑
i,j [1−Qij ]β̂(t)uik vjq

,

iii) update prior on anomaly indicator:

µ =
1

N(N − 1)/2

∑
i<j

Qij , (5)

iv) update anomaly parameters:

π =

∑
i,j QijÂij(0)∑

i,j Qij
, (6)

ℓ =

∑
i,j

∑T
t=1 Qij Âij(t)

T
∑

i,j ϕQij
, (7)

v) The disappearance rate of regular edges β has no closed-form update as in Eq. (S25) ,
vi) The disappearance rate of anomalous edges ϕ has no closed-form update as in Eq. (S26) .

III. Results

A. Synthetic Networks

As the primary objective of this study is to develop an algorithm for anomaly detection, it is essential to evaluate
the predictive capability of the DynACD algorithm in identifying anomalous edges over time. To this end, we generate
synthetic networks, using our model, and evaluate its performance in detecting anomalies in a situation where we
know the ground truth anomalies. These are non-zero entries of the matrix Z used to generate the data. We utilize
the matrix Q with entries Qij (refer to Sec. S3), representing the model’s estimations of anomaly score for each edge.
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FIG. 1: Anomaly detection in synthetic networks. The AUC(Z) metric quantifies the model’s ability to
distinguish between regular and anomalous edges. The synthetic network has N = 300 nodes, average degree
⟨k⟩ = 8, and K = 8 communities of equal-size unmixed group membership generated with our generative model.
Here, β = 0.2, ℓ = 0.2, ϕ = 0.2. Lines are averages and standard deviations over 10 sampled networks. DynACD (◦),
and ACD on aggregated dataset (□).

We consider the area under the receiver operating curve (AUC) as prediction performance evaluation metric. A higher
AUC score signifies enhanced performance in accurately identifying true anomalies. We are interested in particular
in assessing how performance is enhanced by exploiting the dynamic character of the data. To this end, we compare
the performance of DynACD against an algorithm developed for anomaly detection in static networks, ACD [19]. ACD
does not accept dynamical data as input. Instead, at each time step, we apply ACD to the aggregated dataset, i.e., the
sum over the time dimension. As a consequence, ACD predicts anomalies in a dataset where the temporal information
is lost.
In both cases, we observe a discernible increase in the model’s anomaly detection capabilities as we increase the
number of time steps, T , which is given as input to the algorithm, as shown in Fig. 1. However, DynACD achieves
significantly higher AUC values when the density of anomalies is low (ρa = 0.1); hence there are few positive examples
of anomalies for a model to detect. For a balanced density (ρa = 0.5), performance is similar for a low number of time
steps, however, subsequently the static model tends to plateau, while DynACD keeps increasing AUC, as more time
steps are given in the input. This behavior is further observed, although to a lesser extent, for more extreme density
of anomalies (ρa = 0.9). These results highlight the advantage of using the temporal information. When density of
anomalies is low, the dynamical model can better recover them. When density is higher, the dynamical model better
benefits of an increasing number of time steps given in input.
Further quantitative examination of DynACD and comparison with DynCD for synthetic networks in additional settings
can be found in Sec. S6.

B. Detecting anomalies in real world dynamical networks

We study temporal real-world networked datasets characterized by a wide spectrum of nodes and edges, originating
from diverse contexts such as trading (Transfermarkt), transportation (US-Air), and social networks (UCI Messages),
see Sec. S7 for a detailed overview.
Our goal is to detect anomalous edges in these different datasets. As in these cases, the true labels for anomalous
or regular edges are unavailable, we utilize the common strategy of injecting random edges into the dataset [8, 26]
and label them as anomalous. Then, we run our anomaly detection algorithm and evaluate the model’s ability to
identify anomalies. Specifically, we inject n random edges between nodes within a given anomaly density range, ρa.
Afterwards, we apply our algorithm to the modified dataset, calculating the expected value E[Zij ] = Qij for the
edge labels, i.e., the probability that the edges between two nodes i, j are anomalous. Following this step, we assign
labels to the edges. In this particular experiment, we identify the initial n pairs (i, j) with the highest Qij values as
anomalous edges. As a performance metric, we calculate the recall, which measures the accuracy of the algorithm in
correctly identifying True Positives; and the AUC, the ability to rank True anomalous edges higher than False anoma-
lous ones. Higher values mean better classification performance in both cases. Notice that with this procedure, as we
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fix the number of detected anomalous edges equal to the number n of injected, we have that recall is equal to precision.

We find a robust performance of DynACD in detecting anomalies across the three datasets, as shown in Fig. 2. We
notice how recall increases with the fraction of injected anomalies ρa, reaching a plateau at around 0.8, depending on
the dataset. Similarly, we find high values of AUC in all datasets, observing both increasing and decreasing trends
with ρa, but even in the decreasing cases (UCI Messages) the performance stays above 0.95. These results confirm
the robustness of DynACD in detecting anomalous edges in different scenarios.

(a) (b)

FIG. 2: Anomaly Detection in the real-world datasets. Performance of DynACD in detecting anomalies across
real-world datasets. The graph illustrates increasing recall with the fraction of injected anomalies ρa, reaching a
plateau at around 0.8, and consistently high AUC values above 0.95, confirming the algorithm’s robustness in
detecting anomalous edges across diverse scenarios. Lines and shades around them are averages and standard
deviations over 10 sampled networks.

C. Analysis of football player transfers from Transfermarkt

To illustrate the applicability of our model, we run the algorithm on the Transfermarkt dataset, which contains
information on player transfers among European men’s football clubs. The dataset contains transfers involving eight
different professional men’s football leagues in Europe, see Sec. S7. Here nodes are clubs and directed edges i → j
represent transfers from club i to club j. We focus on transfers made during the period from season 2008/2009 to
2022/2023. We have divided the dataset into five distinct time snapshots, each encompassing a four-year duration.
We consider a network where At

ij = 1, 0 if there is at least a player transferred from i to j in period t or not.
To enrich the qualitative interpretation of our results, we utilize metadata for club categorization. This includes

the transaction volume associated with player transfers into and out of clubs, representing a proxy for their financial
wealth. Overall, we have a total of N = 261 clubs across eight leagues and E =

∑
i,j,t A

t
ij = 7613 transactions.

1. Community analysis

Our algorithm assumes that community membership is a primary driver of player transfers between football clubs,
with the idea that one can identify main patterns of behaviors and thus cluster clubs in groups. These patterns can
be influenced by different factors. For instance, we expect that the country of a club plays an important role, as this
shapes the main market in which the club is embedded in. By analyzing the distribution of community membership we
see that indeed country correlates well with the inferred partitions, see Fig. 5 for an example of the in-coming groups
based on v. Indeed 4 out of 8 inferred groups are made mainly by clubs in the same countries (Italy, Netherlands,
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England, and Russia). Other groups are more mixed, with a group made mainly of German and Spanish clubs.
French and Portuguese clubs are split into two main communities and, to a lesser extent, into other groups. In one
community, the country does not seem to play a role. It is a small community of 17 clubs that have a low magnitude
in all the entries of vi. These are small clubs that typically classify in the bottom part of the league table, have a low
wealth category, and do not trade much in general. The main exception is RB Leipzig, which is a top European club.
We argue that it is classified in this group because this dataset does not fully capture the pattern of player transfers
that concerns this particular club. The Transfermarkt dataset contains only deals that involve clubs in either of the
eight considered leagues. However, RB Leipzig is very active in markets outside these eight countries, hence our data
may be limited in capturing the behavior of this club. Similar patterns are observed for the out-going communities
based on u, see Fig. S3.
Finally, one can notice how top clubs tend to have a more mixed-membership as they trade more broadly across
different markets, and their in-coming and out-going membership differs. For instance, Manchester City and Chelsea
have in-coming communities that differ from those of the majority of English clubs, while their out-going ones are
more aligned with their country. This signals that, while they tend to sell players more often to other English clubs,
they tend to instead acquire players from other markets.

2. Club wealth and anomalous edges

In addition to communities, our algorithms naturally output estimates of anomalous edges. We analyze how these
edges are distributed between clubs based on their wealth. We extract three tiers based on the total transfer fees spent
in the years covered by the dataset by each club. Specifically, we label a club’s wealth as “high” when this number is
higher than 800 Me; “low” if is lower than 150 Me; and “average” if it is in between these two extremes. Then, we
measure how regular and anomalous edges are distributed based on the wealth of the in-coming and out-going club.
In Fig. 4, we notice a significantly higher fraction of anomalous edges involving wealthier clubs (“high”) at both ends.
Specifically, compared to the clubs engaged in regular edges, there is a notable increase in the number of transfers
from wealthier clubs to both wealthier (0.119 for anomalous edges vs. 0.044 for regular edges), and average wealth
(0.127 for anomalous edges vs. 0.094 for regular edges) clubs. Conversely, we notice a higher fraction of transfers
between low wealth clubs in regular edges, suggesting that is less common to observe an anomalous edge between
clubs of lower wealth.

3. Interplay between anomalous edges and communities

In the previous paragraphs, we focused on describing communities and anomalies separately. However, our model
combines them to explain the observed transactions in time between clubs. Hence, here we investigate how these
two factors together contribute to explaining edge formation, and illustrate various concrete scenarios where their
interplay can guide practitioners in their analysis.

Anomalies between clubs with compatible communities

The previous analysis studied coarse-grained patterns of anomalies based on club wealth. Having access to individ-
ual estimates of Qij , the expected value of an edge to be anomalous, we can also isolate fine-grain patterns described
by the behavior of individual clubs. One such pattern is that involving clubs in the same community. While we would
usually expect more edges to exist between nodes with higher λt

ij , as dictated by their community memberships, we
can still observe high Qij . This is because anomalies may also stem from unusual dynamical patterns, i.e., unusual
distribution in time of transfers than we would otherwise expect between clubs with high λt

ij . One example of such
a case is that of transfers involving pairs of Italian clubs, Genoa and Juventus and Genoa and Inter Milan, as shown
in Table I. Comparing the distribution of transfers in time between these clubs and those involving other pairs with
similar community memberships and λt

ij , we can attribute anomalies to the frequent appearance and disappearance
of transfers between these specific clubs, impacting the expected value of the anomalous parameter, as detailed in
Eqs. (S30-S31). We notice in fact that, while we expect transfers between Genoa and Juventus or Inter Milan to
happen, we observe a higher number than expected, in both directions over time. In other words, it is not the presence
of transfers between these clubs that is anomalous, but their frequency. This can also be seen in Fig. 3, where we
isolate all the transfers involving Genoa and notice how Juventus and Inter Milan are the only Italian clubs that
exchange players with them consistently across time. This pattern is inherent to the dynamic nature of the data and
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could not be naturally captured by static models for anomaly detection.

Anomalies between clubs with incompatible communities

A different pattern of anomaly is that involving clubs with low λt
ij . When several edges exist between pairs of clubs

in a way that is not expected by their community memberships (as measured by a low λt
ij), our model flags also these

types of transfers as anomalous. A notable example is a set of edges involving Udinese and Watford, an Italian and
an English club, respectively. Both clubs have memberships ui and vi peaked in one community (the one of mainly
Italian and mainly English clubs, respectively). From this estimate, we expect the two clubs to transfer players
mainly with other clubs in the same country. However, we observe an unusual high volume of transfers between these
two clubs, something that is flagged as anomalous by our model, see Table S3. As the total number of transfers
(Aij(t) = 7) is not an anomaly in general (it is observed in several other pairs of clubs that are estimated as regular),
we can attribute the high estimated Qij to the fact that it is a high number for clubs in these two communities
specifically. We should remark that Udinese and Watford shared ownership in the years tracked by the dataset, which
could explain the unusually high number of transactions. Note that this information was not given in input to the
algorithm. Instead, observing a high value of Qij prompted further investigation into the relationship between these
two clubs, which illustrates a practical usage of this model.
A more extreme case under this scenario is when some edges are observed between clubs with λt

ij = 0. Depending on
what time step the edges are observed, this could imply the extreme value Qij = 1, see Eq. S30. In this case, it may
be enough to observe one player transferred between two clubs in very incompatible communities to flag the edge as
anomalous, for instance transfers between NEC Nijmegen and CA Osasuna in Table S3.

Case study: mislabeling in data collection.

Having discussed different types of anomalies captured by our model, we now illustrate relevant case scenarios
that apply more broadly when collecting a dataset. For this, we manipulate the dataset by merging the clubs AC
Milan and Inter Milan, two distinct Italian clubs with similar names. The high similarity in their name can cause
confusion in data collection processes that start with a preprocessing step to clean node names to identify them
uniquely. For instance, it is common to have several repetitions of the same node with slightly different names, due
to errors or imprecisions in the data collection, particularly when node names come as string types (as opposed to
integer numbers). This was a necessary step also in the Transfermarkt data, where many clubs appeared multiple
times with slightly different string names. In our example, “Milan”, “A.C. Milan”, “AC Milan”, and “Milan AC” refer
all to the same club, whereas “Inter Milan”, “FC Internazionale”, “Inter” refer to another club; but “Inter Milan” can
cause confusion. In our experiment, we merge the two clubs simulating a possible error caused by mislabeling clubs.
As a result, we obtain one node to represent two clubs, and players transferred involving either of these two clubs are
all assigned to that unique node “Milan”. All the rest of the dataset is kept the same as before. We run the model on
this manipulated data and obtain several anomalous edges as in the first case described above, i.e., high λt

ij and high
Qij , as shown in Table S4. All these edges involve the “Milan” node and several other clubs (all Italian but Manchester
City). The anomalies stem from the high frequency of transfers (in several cases At

ij = T , ∀t = 1, . . . , T ), which is
higher than what is expected by communities alone. This high frequency of anomalies involving one particular club
prompts practitioners to investigate further, and likely to identify the data collection problem.
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TABLE I: Transfermarkt dataset: frequency of transfers between Genoa and Juventus or Inter Milan.
Illustrative instances of player transfers between the clubs, characterized by a high expected value for tie formation
based on community membership, here measured by a high average ⟨λt

ij⟩ =
∑

t λ
t
ij/T . However, these interactions

were flagged as anomalous (high Qij) due to higher rates of appearance.

Source Club (i) Target Club (j) Aij(0) Aij(1) Aij(2) Aij(3) Aij(4)
∑

t Aij(t) Qij ⟨λt
ij⟩

Genoa Juventus 1 1 1 1 1 5 0.425 0.376
Juventus Genoa 1 1 0 1 1 4 0.425 0.483

Genoa Inter Milan 1 1 1 1 1 5 0.357 0.340
Inter Milan Genoa 1 0 1 1 1 4 0.357 0.427

FIG. 3: Transfermarkt datasets: Genoa transfer network: Visualization of player transfers to and from
Genoa involving various clubs at different time steps. Notably, there is a consistent presence of transfers with
Juventus and Inter Milan at most time steps.
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(a) (b)

FIG. 4: Transfermarkt datasets: Edges Distribution by wealth category of clubs. Each cell in the
heatmap represents the proportion of edges between clubs, distinguished by wealth categories (High, Average, and
Low). We separate the set of edges considered in each heatmap between a) anomalous and b) regular, as estimated
by DynACD. We normalize the heatmaps by the total number of edges considered in each plot, so that the sum over
all entries in each heatmap equals 1. Darker color means higher proportion of edges exchanged between clubs in the
given wealth categories.
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FIG. 5: Communities in the Transfermarkt dataset: In-coming (soft) community membership v of clubs. The
colors of the y-labels indicate the country to which the receiving clubs belong. This plot reveals an alignment
between the community membership of clubs and their respective nationalities. The corresponding country of each
league is shown in the legend on the right with the color assigned to that league.
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IV. Discussion

We have developed a principled probabilistic generative model that integrates mechanisms for the emergence of
anomalous edges within a dynamic network. The model’s core is rooted in the community memberships of nodes as
the structural parameters that determine regular patterns. The network interactions governed by this mechanism are
identified as the regular edges in the network. Instead, deviations for regularity are detected as anomalous.
One of the key advantages of our approach lies in its ability to provide targeted anomaly detection within specific
communities of the network. Traditional anomaly detection methods often struggle to localize anomalies, treating
the entire network homogeneously. In contrast, DynACD exploits the localized nature of anomalies, recognizing that
deviations from regular behavior often occur within specific subsets of the network. This targeted approach enhances
the accuracy and efficiency of anomaly detection, particularly in scenarios where anomalies manifest in localized
regions rather than affecting the entire network.
Our approach models evolving network structures, allowing us to detect anomalies without prior knowledge. Empirical
tests show the effectiveness of DynACD in spotting anomalous events in dynamic networks, particularly when the
temporal aspect of the data is essential for understanding network structure.
Furthermore, the application of DynACD to the analysis of football player transfers illustrates its practical utility in
real-world scenarios. By uncovering anomalous transfer patterns between football clubs, DynACD highlights potential
irregularities that may signify mislabeling in data collection processes or unusual dynamics in player interactions. This
case study highlights the importance of integrating domain knowledge with data-driven anomaly detection methods,
which allows identifying and interpreting anomalies in complex networks.
Notably, our model is formulated on multiple assumptions. First, we assume community structure to capture regular
patterns. Hence, our model may not be appropriate to model datasets where a community structure is not expected.
Second, we assume that anomalies are static: although edges can appear and disappear in time their regular or
anomalous nature does not change. Also in this case, if we expect an edge to change in nature from regular to
anomalous, or vice versa, our model may not be appropriate. One can relax this assumption, for instance by making
the variables Zij time-dependent. This would require further specifying a mechanism for their transition in time and
an increased number of parameters, potentially leading to over-fitting and higher algorithmic complexity. Third, we
assume a Markovian transition probability for edges to appear and disappear. If we expect significant time-correlations
between past history beyond that one-step away, then we would need a model that is able to incorporate memory
into the system.
While we have promising results in confirming the reliability and applicability of the proposed algorithm in real world
scenarios, there are still several directions to extend the model. Integrating topological properties as reciprocity [27, 28]
or triadic closure [29] could enhance its expressiveness in representation of real-world interactions. Exploring how to
integrating both node and edge anomalies is a natural future direction, considering their coexistence in datasets. This
could be potentially addressed by also incorporating extra information as node attributes [30–32]. In general, main
challenges remain addressing the scalability of these method to handle large datasets and the ability to incorporate
the intuition of experts and provide them interpretable results.
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S1. Model Development

We follow an approach similar to that of Zhang et al. [19, 24] and calculate the probability of the existence of
edges by solving a master equation. Defining p

(s)
ij,k(t) as the probability of having k edges of type s, where s represents

regular or anomalous connections, between nodes i and j at time t, we can express the evolution of this probability
using the following master equation:

dp
(s)
ij,k(t)

dt
= Λ

(s)
ij (t) p

(s)
ij,k−1(t) + (k + 1)Γ(s) p

(s)
ij,k+1(t)−

(
Λ
(s)
ij (t) + k Γ(s)

)
p
(s)
ij,k(t), (S1)

where Λ
(s)
ij (t) = λij(t) and Γ(s) = γ stand for regular edges, (s = r), while Λ

(s)
ij (t) = ℓ, and Γ(s) = ζ for anoma-

lous edges (s = a). To solve this equation, we use a generating function approach [33] by defining g(s)(z, t) =∑∞
k=0 p

(s)
ij,k(t)z

k. The solution for the generating function is given by [23]:

g(s)(z, t) = f
[
(z − 1)e−tΓ(s)

]
e

(z−1)Λ
(s)
ij

(t)

Γ(s) , (S2)

which can be expanded in terms of z to give us p
(s)
ij,k(t) (more details in Sec. S2). For each type of edges, anomalous

or regular edge, there are four possible transitions from time t−1 to t: 1) there is no edge neither at time t−1, nor at
t; 2) the appearance of an edge from non-edge, 3) disappearance of an existing edge, and 4) an existing edge remains;
with the following probabilities, respectively,

pr0→0 = e−β×λij(t), pa0→0 = e−ϕ×ℓ

pr0→1 = β × λij(t)e
−β×λij(t), pa0→1 = ϕ× ℓe−ϕ×ℓ

pr1→0 = β e−β×λij(t), pa1→0 = ϕ e−ϕ×ℓ

pr1→1 = (1− β)e−β×λij(t), pa1→1 = (1− ϕ)e−ϕ×ℓ , (S3)

where β = 1 − e−γ , and ϕ = 1 − e−ζ . Hence, we can find the transition probability for regular and anomalous edge
as follows,

P (Aij(t)|Aij(t− 1),Θ) = [Pa(Aij(t)|Aij(t− 1),Θ)]
Zij × [Pr(Aij(t)|Aij(t− 1),Θ)]

1−Zij

=
[
[pa0→0]

(1−A(t−1))(1−A(t))
[pa0→1]

(1−A(t−1))A(t)
[pa1→0]

A(t−1)(1−A(t))
[pa1→1]

A(t−1)A(t)
]Zij

×
[
[pr0→0]

(1−A(t−1))(1−A(t))
[pr0→1]

(1−A(t−1))A(t)
[pr1→0]

A(t−1)(1−A(t))
[pr1→1]

A(t−1)A(t)
]1−Zij

=
[
e−ϕ×ℓ [ϕ× ℓ]

(1−A(t−1))A(t)
[ϕ]

A(t−1)(1−A(t))
[(1− ϕ)]

A(t−1)A(t)
]Zij

×
[
e−β×λij(t) [β × λij(t)]

(1−A(t−1))A(t)
[β]

A(t−1)(1−A(t))
[(1− β)]

A(t−1)A(t)
]1−Zij

. (S4)
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Given the definition of the joint distribution in Eq. (4), this leads to the following time-dependent, log-posterior:

L(T,Θ) = log[P ({A(t)}|{A(t− 1)},Θ)]

= −
∑
Z

q(Z) log q(Z) +
∑
i,j

∑
Z

q(Z)
{
log

[
[Pois(Aij ;λij(0)) (1− µ)](1−Zij) [Pois(Aij ;π)µ]

Zij

]

+

T∑
t=1

log
[
[e−β×λij(t)](1−Aij(t−1))(1−Aij(t))× [β × λij(t)]

(1−Aij(t−1))Aij(t) × βAij(t−1)(1−Aij(t)) × (1− β)Aij(t−1)Aij(t)
](1−Zij)

+

T∑
t=1

log
[
[e−ϕ×ℓ](1−Aij(t−1))(1−Aij(t))× [ϕ× ℓ](1−Aij(t−1))Aij(t) × ϕAij(t−1)(1−Aij(t)) × (1− ϕ)Aij(t−1)Aij(t)

]Zij

}
. (S5)

S2. Master Equation

To solve the master equation in Eq. S1, we multiply both sides by zk and sum over k; then defining the generating
function g(s)(z, t) =

∑∞
k=0 p

(s)
k (t)zk, we get,

∂g(s)(z, t)

∂t
= Λ

(s)
ij (t) z g(s)(z, t) + Γ(s) ∂g

(s)(z, t)

∂z
− Λ

(s)
ij (t) g(s)(z, t)− z Γ(s) ∂g

(s)(z, t)

∂z

= (z − 1)

[
Λ
(s)
ij (t) g(s)(z, t)− Γ(s) ∂g

(s)(z, t)

∂z

]
. (S6)

By replacing time dependent Λ
(s)
ij (t) in Eq. S6, by its expected value, we reach the following relation for g(s)(z, t),

g(s)(z, t) = f
[
(z − 1)e−tΓ(s)

]
e

(z−1)Λ
(s)
ij

Γ(s) , (S7)

where f(x) is any once-differentiable function of its argument satisfying f(0) = 1, [23, 24]. We can assume that at

t = 0, there were no edges between two specific nodes, hence by setting t = 0 in Eq. S7, we find f(x) = e
− x

Γ(s)
Λ

(s)
ij .

For the regular edges, we assume the mean as
Λ

(s)
ij

Γ(s) = λij . Therefore, at t = 1,

g(r)(z, 1) = exp
{
(z − 1)(λij)(1− e−γ)

}
= exp {β (z − 1)(λij)} . (S8)

S3. Inference

Our goal is, given these two mechanisms, i.e., edge community membership and anomalous edges, first to determine
the values of the latent parameters, Θ ≡ {u, v, w(t), β, µ, π, ϕ, ℓ}, which determine the relationship between the hidden
label Zij and the data, and then, given those values, to estimate the label Zij itself.

We have the posterior:

P (Z,Θ|A) =
P (A|Z,Θ)P (Z|µ)P (Θ)P (µ)

P (A)
. (S9)

Summing over all the possible labels we have:

P (Θ|A) =
∑
Z

P (Z,Θ|A) , (S10)

which is the quantity that we need to maximize to extract the optimal Θ. It is more convenient to maximize its
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logarithm, as the two maxima coincide. We use the Jensen’s inequality:

logP (Θ|A) = log
∑
Z

P (Z,Θ|A) ≥
∑
Z

q(Z) log
P (Z,Θ|A)

q(Z)
, (S11)

where q(Z) is a variational distribution that must sum to 1. In fact, the exact equality happens when:

q(Z) =
P (Z,Θ|A)∑
Z P (Z,Θ|A)

, (S12)

this definition is also maximizing the right-hand-side of Eq. (S11) w.r.t. q. We then need to maximize it with respect
to Θ to get the latent variables. This can be done in an iterative way using Expectation-Maximization, alternating
between maximizing w.r.t. q using Eq. (S12) and then maximzing Eq. (S11) w.r.t. Θ.

Defining Qij =
∑

Z q(Z)Zij , the expected value of Zij over the variational distribution, we obtain:

L(T,Θ) = log[P ({A(t)}|{A(t− 1)},Θ)]

= −
∑
Z

q(Z) log q(Z) +
∑
i,j

[Qij logµ+ (1−Qij) log(1− µ) +Qij [−π +Aij(0) log π]]

+
∑
i,j

{
(1−Qij) [−λij +Aij(0) log λij ] +

T∑
t=1

{
(1−Qij) [−β λij(t) + [(1−Aij(t− 1))Aij(t) +Aij(t− 1)(1−Aij(t))] log β

+(1−Aij(t− 1))Aij(t) log λij(t) +Aij(t− 1)Aij(t) log(1− β)] +Qij [−ϕ ℓ+ (1−Aij(t− 1))Aij(t) log ℓ]

+Qij [[(1−Aij(t− 1))Aij(t) +Aij(t− 1)(1−Aij(t))] log ϕ+Aij(t− 1)Aij(t) log(1− ϕ)]

}}
. (S13)

To deal with the summation in the log, we again apply Jensen’s Inequality,

log β
∑
k,q

uikvjqwkq ≥
∑
k,q

ρijkq log β uikvjqwkq −
∑
k,q

ρijkq log ρijkq . (S14)

The equality will be established when,

ρijkq =
uikvjqwkq∑
k,q uikvjqwkq

. (S15)
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It leads to the log-posterior as a function of the probability distributions,

L(T,Θ) = log[P ({A(t)}|{A(t− 1)},Θ)] =

−
∑
Z

q(Z) log q(Z) +
∑
i,j

[Qij logµ+ (1−Qij) log(1− µ)]

+
∑
i,j

{
(1−Qij)

−∑
k,q

u
(0)
ik v

(0)
jq wkq(0) +Aij(0) (

∑
k,q

ρijkq log u
(0)
ik v

(0)
jq wkq(0)−

∑
k,q

ρ
(0)
ijkq log ρ

(0)
ijkq)


+Qij [−π +Aij(0) log π]

+

T∑
t=1

{
(1−Qij)

−β
∑
k,q

uikvjqwkq(t) + (1−Aij(t− 1))Aij(t)(log β +
∑
k,q

ρijkq log uikvjqwkq(t)−
∑
k,q

ρijkq log ρijkq)

+Aij(t− 1)(1−Aij(t)) log β +Aij(t− 1)Aij(t) log(1− β)] +Qij [−ϕ ℓ+ (1−Aij(t− 1))Aij(t) log ℓ]

+Qij [[(1−Aij(t− 1))Aij(t) +Aij(t− 1)(1−Aij(t))] log ϕ+Aij(t− 1)Aij(t) log(1− ϕ)]

}}
. (S16)

We initiate the process by taking the derivative of Eq. (S16), concerning the individual parameters, such as uik.
We make the assumption of a uniform prior with respect to Θ, but we can readily integrate more intricate selections
if required. Furthermore, we examine static values for u and v, while considering dynamic variations for w. We define
Âij(t) = Aij(t)(1−Aij(t− 1)) when t > 0, Âij(0) = Aij(0), and β̂(t) = 1 for t = 0, and β̂(t) = β for t > 0.

∂L(T,Θ)

∂uik
= 0 , (S17)

∑
j

{
[1−Qij ]

−∑
q

vjqwkq +
∑
q

ρijkqÂij(0)
1

uij

+
T∑

t=0

[1−Qij ]

−β
∑
q

vjqwkq + Âij(t)×
∑
q

ρijkq
1

uij

}
= 0 .

(S18)

This yields:

uik =

∑
j,q,t [1−Qij ] ρijkq(t) Âij(t)∑

j,q vjq [1−Qij ]
∑T

t=0 β̂(t)wkq(t)
. (S19)

We find similar expression for vik and wkq.

vik =

∑
j,q,t [1−Qij ] ρijkq(t) Âji(t)∑

j,q ujq [1−Qij ]
∑T

t=0 β̂(t)wkq(t)
, (S20)

wkq(t) =

∑
i,j [1−Qij ] ρijkq Âij(t)∑
i,j [1−Qij ]β̂(t)uik vjq

. (S21)

Following the same procedure, we find the expressions for µ and ℓ:

µ =
1

N(N − 1)/2

∑
i<j

Qij , (S22)

π =

∑
i,j Qij Âij(0)∑

i,j Qij
, (S23)
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ℓ =

∑
i,j

∑T
t=1 Qij Âij(t)

T
∑

i,j ϕQij
. (S24)

The static parameters β and ϕ lack closed-form updates. Hence, to determine their values, we need to employ
numerical root-finding methods on their respective equations:

∑
i,j

T∑
t=1

[1−Qij ]

{
− β

[
λij(t) +

1

1− β
Aij(t− 1)Aij(t)

]
+
[
Âij(t) +Aij(t− 1)(1−Aij(t))

]}
= 0 , (S25)

and

∑
i,j

T∑
t=1

Qij

{
− ϕ

[
ℓ+

1

1− ϕ
Aij(t− 1)Aij(t)

]
+
[
Â(t) +Aij(t− 1)(1−Aij(t))

]}
= 0 . (S26)

To estimate q(Z), we insert the estimated parameters into Eq. (S9):

q(Z) =

∏
i,j [Pois(Aij(0);π)Fa(ϕ, ℓ, Aij , T )]

Zij [Pois(Aij(0);λij(0))Fr(β, λij(t), Aij , T )]
1−Zij

∏
i<j µ

Zij (1− µ)(1−Zij)∑
Z

∏
i,j [Pois(Aij(0);π)Fa(ϕ, ℓ, Aij , T )]

Zij [Pois(Aij(0);λij(0))Fr(β, λij(t), Aij , T )]
1−Zij

∏
i<j µ

Zij (1− µ)(1−Zij)

=
∏
i<j

[Pois(Aij(0);π)Pois(Aji(0);π)Fa(ϕ, ℓ, Aij , T )Fa(ϕ, ℓ, Aji, T )µ]
Zij∑

Zij=0,1 [Pois(Aij(0);π)Pois(Aji(0);π)Fa(ϕ, ℓ, Aij , T )Fa(ϕ, ℓ, Aji, T )µ]
Zij

(S27)

×
∏
i<j

[Pois(Aij(0);λij(0))Pois(Aji(0);λji(0))Fr(β, λij(t), Aij , T )Fr(β, λji(t), Aji, T ) (1− µ)]
(1−Zij)∑

Zij=0,1 [Pois(Aij(0);λij(0))Pois(Aji(0);λji(0))Fr(β, λij(t), Aij , T )Fr(β, λji(t), Aji, T ) (1− µ)]
(1−Zij)

(S28)

=
∏
i<j

Q
Zij

ij (1−Qij)
(1−Zij) , (S29)

where

Qij =

µPois(Aij(0);π)Pois(Aji(0);π) × Fa(ϕ, ℓ, Aij , T )Fa(ϕ, ℓ, Aji, T )

µPois(Aij(0);π)Pois(Aji(0);π)Fa(ϕ, ℓ, Aij , T )Fa(ϕ, ℓ, Aji, T ) + (1 − µ)Pois(Aij(0);λij(0))Pois(Aji(0);λji(0))Fr(β, λij(t), Aij , T )Fr(β, λji(t), Aji, T )
,

(S30)

and

Fr(β, λij , Aij , T ) =

T∏
t=1

e−β×λij(t)
[
[β λij(t)]

(1−Aij(t−1))Aij(t)[β]Aij(t−1)(1−Aij(t))[1− β]Aij(t−1)Aij(t)
]

(S31)

Fa(ϕ, ℓ, Aij , T ) =

T∏
t=1

e−ϕ×ℓ
[
[ϕ ℓ](1−Aij(t−1))Aij(t)ϕAij(t−1)(1−Aij(t))[1− ϕ]Aij(t−1)Aij(t)

]
. (S32)

S4. Covergence criteria

The EM algorithm involves the random initialization of Θ ≡ {u, v, w(t), β, µ, π, ϕ, ℓ}, followed by iterations over
Eqs. S19-S24, and S30, until achieving convergence of the log-posterior in Eq. (S13). For the computation of log q(Z),
we employ Eq. (S29), representing a Bernoulli distribution.
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S5. Generative model

Being generative, our model can be used to generate synthetic networks that include both anomalous edges and
community structure over time. To this end, we sample the parameters Θ ≡ {u, v, w(t), β, µ, π, ϕ, ℓ} and then, given
these latent variables, we sample Z. Finally, given the Z and the latent variables, we can sample the adjacency matrix
A.

To build the adjacency matrix at the first time step, i.e., T = 0, and for a given set of community parameters
as the input [25, 26], we sample anomalous edges from a Poisson distribution as in Eq. (1), with a Bernoulli prior
as in Eq. (2). The mean value of the Poisson distribution, π, is constant for all edges, however, its value can be
chosen in order to control the ratio ρa of edges being anomalous over the total number of edges. The average number
of anomalous and non-anomalous edges are Nµ (1 − e−π), and (1 − µ)

∑
i,j(1 − e−λij(0)), respectively. Assuming a

desired total number of edges E, we can multiply π, µ and λij(0) by suitable sparsity constants that tune: i) the ratio

ρa =
Nµ (1− e−π)

Nµ (1− e−π) + (1− µ)
∑

i,j(1− e−λij(0))
∈ [0, 1] ;

ii) the success rate of anomalous edges π. Once these two quantities are fixed, the remaining sparsity parameter for
the matrix λ, is estimated as:

E (1− ρa) = (1− µ)
∑
i,j

(1− e−cλij(0)) , (S33)

which can be solved numerically with root-finding methods.
To construct adjacency matrix at the next time steps, we use the transition rates from Sec. S1.

S6. Results on synthetic datasets

a. Experimental settings for synthetic networks We consider networks with hard communities of equal size and
assortative structure. We vary the anomaly density within the range ρa ∈ [0, 1] and set the disappearance rate of
anomalous and regular edges to ϕ = 0.2 and β = 0.2, respectively. For comparison, we establish a baseline model,
termed DynCD, which simplifies our model to standard community detection for dynamic networks without any
anomaly detection mechanism. This is obtained by setting µ = 0 and lim ℓ → 0, which are kept fixed as hyper-
parameters in the inference task. Having fixed the parameters, we generate 10 samples of networks for each value
of ρa. For each network, we generate an initial state followed by up to T further snapshots. The initial state is
formed based on the the community structure and anomaly density outlined in Eq. (1). The successive snapshots are
generated according to transition rates in Eq. (S3), as explained in Sec. S5.

b. Community detection As the presented algorithm hinges on incorporating the community structure as the
regular model for tie formation between nodes, an important aspect is to demonstrate the competence of the model in
accurately retrieving the community structure. The results presented in Fig. S1(a) demonstrate the effectiveness of our
proposed anomaly-community detection algorithm, DynACD, compared to the model without an anomaly detection
mechanism, DynCD. The plot shows the cosine similarity (CS) between the ground truth and inferred communities
for synthetic networks with N = 300 nodes, average degree ⟨k⟩ = 8, and K = 8 communities, and total number of
time stamps T = 20.

The results indicate that DynCD performs similar to DynACD for small values of anomaly density (ρa). Neverthe-
less, as the number of edges without community structure increases, the algorithm’s ability in community detection
decreases significantly, aligning with expectations. On the other hand, DynACD, which includes an anomaly detection
mechanism, is greatly impacted by the number of time steps. Despite its weaker performance in community detection
during the initial time steps, it exhibits continuous improvement over time. This demonstrates the effectiveness of
the proposed anomaly detection mechanism in improving the overall community detection accuracy.

c. Link prediction performance In addition, we assess the performance of DynACD in the link prediction task,
comparing it with DynCD. For each time step t ∈ [1, T ], we hide an individual snapshot A(t) (test set), and fit the
data using the previous snapshots A(0), . . . , A(t − 1) (training set). We test whether the model is able to predict
the network’s evolution using the area under the curve (AUC) calculated on the test set, which gauges the likelihood
that a randomly chosen edge possesses a higher expected value than a randomly selected non-existent edge. A perfect
reconstruction is indicated by a value of 1, while 0.5 denotes random chance. To compute the expected value of a
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(a) (b)

FIG. S1: Community detection and Link Prediction in synthetic networks. a) Cosine similarity (CS)
between ground truth and inferred communities. The model without anomaly detection mechanism, DynCD,
performs significantly for small values of anomaly density, ρa. However, by increasing ρa, i.e., more edges without
community structure, the algorithm’s ability in community detection decreases, as it is expected. b) DynACD
exhibits a clear and consistent increase in the estimated (AUC) over time. Synthetic networks were generated with
N = 300 nodes, average degree ⟨k⟩ = 8, and K = 8. In addition the model parameters were fixed to β = 0.2, ℓ = 0.2,
ϕ = 0.2. Lines are averages and standard deviations over 10 sampled networks. Anomaly: True (◦), and False (⋄).

regular edge, Eq. (S34) is employed:

E [Aij(t)] =

{
β λij(t)

1+β λij(t)
if Aij(t− 1) = 0

1− β if Aij(t− 1) = 1
. (S34)

Similarly, the expected value of an anomalous edge is computed using Eq. (S35):

E [Aij(t)] =

{
ϕ ℓij

1+ϕ ℓij
if Aij(t− 1) = 0

1− ϕ if Aij(t− 1) = 1
. (S35)

It is important to note that while the expected value at time t relies only on the network at the preceding time step,
all parameters are inferred using the entire network history (excluding the final time step, i.e. test set). Therefore,
our model is trained with the complete set of snapshots A(0), . . . , A(t− 1). In general, both DynACD and DynCD
demonstrate reasonable performance in link prediction. However, DynCD reaches a plateau in its performance over
time. In contrast, DynACD exhibits a clear and consistent increase in the estimated AUC over time, as illustrated in
Fig. S1(b). Notably, while the estimated AUC values by DynACD converge to a maximum over time across all ranges
of anomaly density, ρa, DynCD exhibits lower AUC values, particularly for higher values of ρa. In other words, as the
number of anomalous edges increases, DynCD loses its effectiveness in link prediction.

d. Estimating parameters Considering that DynACD is a generative model, it has the capability to learn the
model parameters, Θ ≡ {u, v, w(t), β, µ, π, ϕ, ℓ}, from the provided dataset. These parameters enable the algorithm
to generate synthetic datasets with statistical features mirroring those of the original dataset. Therefore, accurate
inference of the model parameters is crucial for the model’s proficiency. Table S1 presents the estimated values of
the latent variables in synthetic data as we vary the density of anomalous edges ρa, illustrating the ability of the
algorithm in retrieving values similar to the ground truth value.

S7. REAL-WORLD DATA SETS: DATASET DESCRIPTION

Table S2 provides a summary of the key characteristics of the studied datasets. The datasets of US-Air and
Transfermarkt have undergone a preprocessing step that involved the splitting the edges in time snapshots, the
removal of self-loops, retaining only nodes with both non-zero incoming and outgoing edges, and keeping only the
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TABLE S1: Estimated latent variables Synthetic networks with N = 300 nodes, average degree ⟨k⟩ = 8, and
K = 8 communities of equal-size unmixed group membership generated with our generative model. Ground truth
values are set to: β = 0.2, ℓ = 0.2, ϕ = 0.2. We report estimated averages and standard deviations over 10 samples
for each of the main model’s parameters.

ρa π ϕ ℓ β
0.1 0.2434± 0.0220 0.2091± 0.0078 0.2151± 0.0094 0.1994± 0.0019
0.4 0.2360± 0.0117 0.2085± 0.0043 0.2072± 0.0057 0.1981± 0.0033
0.6 0.2285± 0.0070 0.2096± 0.0054 0.2044± 0.0079 0.1963± 0.0035
0.9 0.2249± 0.0088 0.2112± 0.0025 0.1966± 0.0046 0.1904± 0.0043

giant connected components.

TABLE S2: Real-world datasets description.

Network Abbreviation N E T Ref.
Data on European football clubs’ player transfers Transfermarkt 261 7613 5 [34]
Network of United States Air Transportation US-Air 867 8039 6 [35]
The UC Irvine messages network UCI Messages 1810 18693 6 [36]

1. US Air Transport Networks

The dataset used in this study provides the dynamics of the United States air transportation network from 2007
to 2016. The original format of the dataset contains three different representations of nodes (airport, city, state) and
edges (number of passengers, number of flights, amount of freight), resulting in a total of nine different networks.
The dataset allows for a comprehensive analysis of the air transportation system, considering various perspectives
and levels of granularity [35]. For this study, the we focused on the period from 2011 to 2016 and used airports as
nodes. The edges represent the flights between airports, with the weight of the edges indicating the number of flights.
This US Air Transport Networks contribute to a detailed understanding of the connectivity and activity within the
air transportation network during the specified time frame.

2. Transfermarkt

The Transfermarkt dataset contains information on player transfers among eight European men football clubs
starting from the 1992/93 season [34] . Transfermarkt is a dedicated website that offers a wide range of data on
football transfers, market values, rumors, and statistics. The dataset is structured into separate files for different
leagues, including the English Premier League, French Ligue 1, German 1.Bundesliga, Italian Serie A, Spanish La
Liga, Portuguese Liga NOS, Dutch Eredivisie, and Russian Premier Liga. Key variables within the dataset include club
name, player name, position, transfer fee, transfer movement, transfer period, league name, year, season, and country.
Our analysis focuses on the dataset spanning the 2008/2009 season to the 2022/2023 season, and for algorithmic
application, we segmented the dataset into five time snapshots, each spanning a four-year duration. Here, edges
indicate transfers of at least one player between two clubs in a given time window.

3. UCI Messages

The UC Irvine messages network dataset is a directed network that contains sent messages between users in an
online community of students from the University of California, Irvine [36]. The dataset consists of nodes that
represent the users and directed edges that represent the sent messages.
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(a) (b)

FIG. S2: Anomaly Detection in the Transfermarkt dataset with injected anomalous edges. a) Anomaly
Score Distribution (Q) Separated by True Labels. The histogram distinguishes between true labels, highlighting the
density of scores for both “Anomalous” and “Regular” instances. b) The confusion matrix illustrates the
classification performance of the model, breaking down the predicted and true labels for each class. The diagonal
elements represent correctly classified instances, while off-diagonal elements indicate misclassifications. We achieve a
recall rate of 0.77 and an AUC(Z) of 0.96 on the Transfermarkt dataset. Here, ρa = 0.1.

S8. Results on REAL-WORLD DATA SETS

In this section, we present a detailed examination of the results obtained from anomaly detection experiments con-
ducted on real-world datasets. Specifically, we analyze the modified Transfermarkt dataset with injected anomalous
edges at a density of ρa = 0.1. The histogram in Sec. S8(a) provides a visual representation of the distribution of
inferred anomaly scores (Q) assigned to edges by DynACD. It effectively discerns between true labels, emphasizing
the density patterns of scores for both “Anomalous” and “Regular” instances. It is evident that edges labeled as
“Regular” exhibit an inferred anomaly score (Q) with a peak around zero. In contrast, the inferred values of Q for
injected edges—those labeled as “Anomalous”—extend across higher values, trending towards one. The confusion
matrix in Sec. S8(b) also visualizes the classification performance of the model, particularly in distinguishing between
anomalous and regular edges.

The results inferred by DynACD and presented in Table S3 align well with our expectations from the algorithm.
Notably, we observe detailed specificity in the transfer information between Udinese Calcio and Watford FC, along
with insights into the transfers involving NEC Nijmegen and CA Osasuna. In both cases, the expected value of
observing a regular transfer between the two involved clubs is negligible, i.e., λij → 0. Therefore, it is reasonable
to infer the existence of an irregular interaction between such clubs, i.e., Qij = 1. This observation highlights that
not only can the consistency in the appearance and disappearance of transfers over time contribute to a higher value
for Qij , as seen in the case of Udinese Calcio and Watford FC, but also a single-time transfer out of community
membership can yield the same result, as the transfer between NEC Nijmegen and CA Osasuna.

During our experiments, in the data preprocessing, we aggregated the transfer data of two Italian clubs, Inter
Milan and AC Milan. Surprisingly, the algorithm inferred a very high value for Qij for many of the interactions of
the aggregated club, referred to as Milan. This observation stemmed from a higher rate of connections between the
aggregated club and numerous others, showcasing DynACD’s ability to detect irregularities. Examples of such inferred
Qijs are provided in Table S4.

Fig. S3 highlights the same points as mentioned in Sec. III C. However, this plot illustrates the out-going (soft)
community membership of clubs.
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S9. Embedding methods from deep learning

In machine learning several approaches have been developed for anomaly detection in networks [3, 8]. Many of
them rely on extra information on nodes, e.g., node attributes or features, which is outside the scope of the problem
presented in our work. In scenarios where only the network structure is given as input, as is the case here, a common
approach is to utilize embeddings. Similar to our memberships u and v, embeddings are vectors assigned to nodes.
Like our model, these embeddings are then utilized to detect anomalous edges. The various approaches differ in the
way these embeddings are learned. For instance, the Netwalk algorithm [8] employs techniques from deep learning.
The main difference between these approaches and the one considered in this paper is that our model postulates
explicitly the presence of anomalous edges. This is because in our case, the probability of an edge is explicitly defined
in terms of u and v (and the other parameters). As a consequence, we can obtain automatically (without further
post-processing) and unambiguously (with the precise definition of Zij in terms of the latent variables) the estimate of
this probability. In contrast, embedding methods do not formulate explicitely this probability. Instead, they make a
broader assumption that embeddings explain the network structure, hence, one can use them a posteriori to determine
what is an anomalous and what is a regular edge. A main consequence of this broader assumption is that one has
to make arbitrary decisions in the post-processing to determine how the embeddings should be used to estimate the
probability of an edge being anomalous.
One important arbitrary decision is how to transform a representation that is assigned to nodes (the embedding
vectors ui and vj) into a representation on edges (i, j). For instance, Netwalk considers various functions to combine
the node representations, with best results obtained with the Hadamard product zij = ui ⊙ vj [3]. In our case
instead, we have automatically the estimated Qij as a function of the inferred u and v, a quantity that has a clear
interpretation as the expected value of the posterior of Zij .
In addition, once the edge representation zij is selected, one has to further decide how to use its inferred value to
assign the probability for an edge to be anomalous. A standard approach is to run the k-means clustering algorithm
on the edge representation vectors to cluster edges in a space (not to be confused with the node embedding space).
Then, one computes the distance between each edge and its cluster centre and edges further away from the cluster
are considered anomalous, with the distance used as a score to quantify the magnitude of being anomalous. All
these steps though require further arbitrary decisions and parameters to be tuned, e.g. what clustering algorithm,
the number of clusters in this new edge representation space, the exact mapping between the distance from their
clusters or other clusters and the anomaly score. Further complexities are added in case of dynamic networks, where
embeddings may change in time.
In the context of our work, we applied the Netwalk algorithm to real-world datasets studied. However, the perfor-
mance of the Netwalk algorithm was found to be very poor when compared to DynACD. It is difficult to pinpoint
exactly the cause of this, as any of the decisions above could impact performance. Consequently, while we provide a
comprehensive discussion on the reasons behind these difference in performance, we refrain from detailing the specific
results obtained from the application of the Netwalk algorithm to the datasets studied. More investigations would be
needed to understand how to calibrate these models for a fair comparison, this is beyond the scope of our work.

TABLE S3: Transfermarkt Dataset: Instances of transfers between clubs exhibiting a low expected value for tie
formation based on community membership. Consequently, these interactions are identified as irregular, regardless
of whether they feature high or low appearance rates.

Source Club (i) Target Club (j) Aij(0) Aij(1) Aij(2) Aij(3) Aij(4)
∑

t Aij(t) Qij ⟨λt
ij⟩

Udinese Calcio Watford FC 0 1 1 1 1 4 1.0 0.049
Watford FC Udinese Calcio 0 0 1 1 1 3 1.0 0.013

NEC Nijmegen CA Osasuna 1 0 0 0 0 1 1.0 0.000
CA Osasuna NEC Nijmegen 0 1 0 0 0 1 1.0 0.000
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TABLE S4: Transfermarkt Dataset with mislabeled nodes. Instances of transfers flagged as anomalous in a
manipulated dataset where Inter Milan and AC Milan are merged into a unique node “Milan” due to mislabeling in
the data collection process. Several transfers involving “Milan” are flagged as anomalous, including transfers with
other teams with compatible communities, as shown by a releatively high value of the average ⟨λt

ij⟩ =
∑

t λ
t
ij/T .

Source Club (i) Target Club (j) Aij(0) Aij(1) Aij(2) Aij(3) Aij(4)
∑

t Aij(t) Qij ⟨λt
ij⟩

Milan Genoa 1 1 1 1 1 5 0.996 0.300
Genoa Milan 1 1 1 1 1 5 0.996 0.239
Milan UC Sampdoria 1 1 1 1 1 5 0.966 0.197
UC Sampdoria Milan 1 1 1 1 0 4 0.966 0.223
AS Roma Milan 1 1 1 1 1 5 0.945 0.238
Milan AS Roma 1 1 1 1 0 4 0.945 0.320
Parma Milan 1 1 1 1 0 4 0.901 0.181
Milan Parma 1 1 1 1 1 5 0.901 0.133
Manchester City Milan 1 1 1 1 1 5 0.658 0.150
Milan Manchester City 1 1 0 0 0 2 0.658 0.176
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FIG. S3: Transfermarkt Datasets: Visualization of the out-going (soft) community membership u of clubs. The
colors of the y-labels indicate the country to which the clubs belong. This plot reveals a clear alignment between the
community membership of clubs and their respective nationalities. The corresponding country of each league is
shown in the legend on the right with the color assigned to that league.
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