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We present a probabilistic generative model and efficient algorithm to model reciprocity in directed
networks. Unlike other methods that address this problem such as exponential random graphs, it
assigns latent variables as community memberships to nodes and a reciprocity parameter to the
whole network rather than fitting order statistics. It formalizes the assumption that a directed
interaction is more likely to occur if an individual has already observed an interaction towards her.
It provides a natural framework for relaxing the common assumption in network generative models
of conditional independence between edges, and it can be used to perform inference tasks such as
predicting the existence of an edge given the observation of an edge in the reverse direction. Inference
is performed using an efficient expectation-maximization algorithm that exploits the sparsity of
the network, leading to an efficient and scalable implementation. We illustrate these findings by
analyzing synthetic and real data, including social networks, academic citations and the Erasmus
student exchange program. Our method outperforms others in both predicting edges and generating
networks that reflect the reciprocity values observed in real data, while at the same time inferring
an underlying community structure. We provide an open-source implementation of the code online.

Introduction

Reciprocity in directed networks, the tendency of a
pair of nodes to form mutual connections between each
other [1], is an important feature of many social relation-
ships. Its impact ranges from affecting the development
of exchange and power to determining the emergence of
trust and solidarity [2, 3]. Behavior of this kind has also
been found in many kinds of networks that reflect hu-
man and institutional interaction, e.g., the world wide
web, online dating, interfirm contracts, journal citations
and email communication [4–8].

Among the various network modeling approaches, that
of probabilistic generative models allows for a rigorous
theoretical foundation within the framework of statisti-
cal inference, as well as a flexible incorporation of domain
knowledge in the modeling assumptions. Here, we con-
sider a latent variable model, a probabilistic approach
that contains latent and observed variables. The latent
variables encode hidden patterns in the data, such as
community memberships, and determine the probability
of ties between nodes. For instance, knowing which com-
munities two nodes belong to helps determine the like-
lihood of their interaction. While in some simple cases,
community structure may explain the tendency toward
reciprocation [9], this mechanism may not be enough to
capture more complex scenarios. Indeed, many genera-
tive models with community structure fail to reproduce
the values of reciprocity observed in real networks, as we
discuss in more details later. Conversely, several mod-
els aimed at capturing reciprocity do not account for
community structure [10, 11]. It is reasonable to expect
that the mechanism regulating the existence of interac-
tions can be influenced by both patterns of communities
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and reciprocity. In addition, communities are often inter-
pretable objects and may correspond to functional units,
hence the value of including them both in the model for-
mulation. Incorporating these two effects into a coher-
ent latent variable model comes with the main challenge
of relaxing the conditional independence assumption be-
tween edges, which is commonly made in generative mod-
els to ease mathematical derivations. In addition, this
task requires properly capturing conditional probabili-
ties, as we describe later. Inspired by these insights, we
propose a novel probabilistic latent variable approach to
model networks that preserves the benefits of generative
models, while capturing both community structure and
reciprocity.

Models for reciprocity and latent community struc-
ture have largely been developed independently of one
another, and only a handful of works have hinted at in-
corporating them into a unique framework. For instance,
Holland et al. [9] describe a stochastic block model with
reciprocity, while Garlaschelli and Loffredo [12] point to-
wards a possible relationship between their model for
reciprocity and general hidden variable models. Reci-
procity is often modeled by means of exponential random
graphs [10, 11, 13, 14], where it is treated as a measured
network property that needs to be reproduced (often to-
gether with other network properties like the degree) by
sampling networks using statistical mechanics principles,
e.g., maximum entropy. This approach does not include
latent variables such as community membership; there-
fore possible group structures can only be estimated a
posteriori on the sampled networks. In contrast, gener-
ative models incorporate a priori community structure
by means of latent variables, which are inferred from the
observed interactions [15, 16]. However, reciprocity is
not explicitly included as a mechanism for tie formation,
thus these models often fail to reproduce the observed
reciprocity values of real networks. Consequently, a gen-
erative method whose latent variables describe both reci-
procity and community memberships is needed.
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Results

Relaxing the conditional independence assumption

A possible explanation for the practical deficiency
of generative models with communities to recover ob-
served reciprocity values is the common assumption of
conditional independence between edges, which makes
the problem both analytically and computational more
tractable. This assumption states that the likelihood of
a directed tie between two nodes depends only on their
community membership (and other possible model pa-
rameters), but not on the existence of a reciprocated
edge. This might be too strict of an assumption to cap-
ture the feature of reciprocity, where it is reasonable to
expect that the existence of an edge in one direction
should also be conditioned on the existence of an edge
in the opposite direction. For instance, if an author i
has cited another author j, this would help predict the
probability of j also citing i. At the same time, knowing
the communities that the authors belong to, should also
help estimating this probability. Mathematically, this
can be translated to relaxing the assumption of condi-
tional independence, which is the approach we take here.
Formally, we represent interactions between N individu-
als as a weighted asymmetric matrix A, with entries Aij
being the number (or weight) of interactions from i to j;
for instance, the number of favors or services that i does
for j, or the number of times that i has endorsed j, e.g.,
as paper citations. Our model assigns a joint likelihood
P (Aij , Aji|Θ) to edges involving the same pairs of nodes
(i, j), given some set of latent parameters Θ. This means
that we account for interactions between edges connect-
ing the same pair of nodes. Specifically, we assume the
likelihood of a network to factorize as:

P (A|Θ) =
∏
i<j

P (Aij , Aji|Θ) . (1)

This is fundamentally different from the prevalent ap-
proaches in generative models, where, typically, one as-
sumes that individual edges are conditionally indepen-
dent given the parameters, i.e., P (A|Θ) =

∏
i,j P (Aij |Θ).

Notice that edges involving different pairs of nodes
remain conditionally independent as in standard ap-
proaches. Equivalently, in terms of the conditional dis-
tribution of an individual edge P (Aij |Aji, Θ), we assume
that this can be different than its marginal distribution
P (Aij |Θ). To the extent of our knowledge, this assump-
tion has never been deeply questioned, except for a few
works [17, 18]. As firstly pointed out by Hoff [19], there
are theoretical groundings for this to hold in common sce-
narios, due to generalizations of de Finetti’s theorem by
Aldous [20] and Hoover [21] (see [18] for a detailed discus-
sion). They show that, for exchangeable graphs, i.e., net-
works where there is no natural ordering between nodes
(which is often the case), the joint probability function of
the adjacency entries can be properly represented using

latent variables on nodes and pairs, i.e., the joint can be
factorized as a product on edges given the latent vari-
ables. However, in the case of directed networks, where
the adjacency matrix is asymmetric, as in our case, a pre-
cise representation can only be obtained using Eq. (1).
While standard conditionally independent models can in
principle arbitrarily well approximate the whole network
distribution [22], in practice it is not known how state-
of-the-art models perform on this regard. To effectively
model reciprocity, we relax the assumption of conditional
independence and include the pairwise dependencies of
two directed edges between pairs of nodes; such minimal
relaxation is required to effectively model reciprocity. We
compare results against standard conditionally indepen-
dent models in terms of various performance metrics on
both synthetic and real data.

The community-reciprocity model

To fully specify the joint likelihood in Eq. (1) we need
to characterize conditional distributions and one-point
marginals like P (Aij |Aji, Θ) and P (Aij |Θ). This can be
done by formalizing the intuition of what drives the for-
mation of edges based on the application at hand. Here,
we aim at capturing reciprocity, hence we assume that
observed interactions exist because of two types of contri-
butions: the communities that nodes belong to, as in gen-
eral community detection frameworks like the stochastic
block model [9], and the fact that an individual that re-
ceives a directed interaction is more likely to reciprocate.
In order to construct a model flexible enough to capture
weighted networks and overlapping communities, we uti-
lize a mixed-membership approach, similar to [15, 16], to
model how communities regulate edge formation.

Given the adjacency matrix A, our goal is to find com-
munity memberships of nodes and the magnitude of the
reciprocity effect in the network. Bringing the contribu-
tions of reciprocity and community structure together,
we model the conditional probability of Aij given Aji as
drawn from a Poisson distribution

P (Aij |Aji, Θ) =
e−λij λ

Aij

ij

Aij !
, (2)

with mean

λij = λ0ij + ηAji =

 K∑
k,q=1

uikvjqwkq

+ η Aji , (3)

where uik, vik are entries of K-dimensional vectors ui
and vi, the out-going and in-coming communities respec-
tively; wkq are the entries of a K × K affinity matrix,
which regulates the structure of communities, e.g., as-
sortative when its diagonal entries are greater than off-
diagonal entries, in this case edges are more likely be-
tween nodes in the same community; η is the reciprocity
parameter, and it regulates the impact of observing Aji
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to predict the existence of Aij . Thus λij includes sepa-
rate contributions from both community parameters and
reciprocity coefficient. Intuitively, an edge with weight
Aij exists if i and j belong to compatible communities
(compatibility is regulated by the affinity matrix) or be-
cause of the reciprocity effect of observing the opposite
edge Aji. For instance, an author might cite another one
because they belong to the same community (e.g., a re-
search sub-field) or because she was cited by the other on
a previous publication. We denote with Θ = (u, v, w, η)
the latent parameters that we want to infer. We omit
from it the number of communities K, as in this work
we assume this as given. When unknown, as in our ex-
periments with real data, we estimate it by using cross-
validation. Notice that this formulation assumes additive
contributions, which implies that we can have zero con-
tribution from one term and still observe the existence of
an edge because of the other term. If both are non-zero,
their total impact sums up. This is conceptually different
than a multiplicative contribution, a possible modeling
choice that we do not explore here. Finally, as we need
positive λij , we assume η ≥ 0. This restricts the model
to have positive reciprocity contribution, i.e., receiving
an in-coming edge can only boost the likelihood of the
corresponding out-going edge, but not decrease it. Al-
though this assumption could be limiting in certain con-
texts, it nevertheless applies to several relevant scenarios,
in particular to the cases we study here. Relaxing this
assumption, and suitably modifying the underlying theo-
retical model is left for future work. Our model specifies
conditional probabilities, however, we do not assume the
existence of a consistent joint distribution. In fact, find-
ing a closed-form for the joint in Eq. (1) consistent with
our proposed conditional requires specifying a marginal
probability function and then enforce consistency equa-
tions like

∑
Aji

P (Aij |Aji, Θ)P (Aji|Θ) = P (Aij |Θ). De-
pending on the choice of this marginal, enforcing consis-
tency might be non-trivial, as it may require perform-
ing intractable marginalization. Early formalizations of
the consistency between conditional and joint distribu-
tion has been provided by Besag’s Auto-Poisson mod-
els [23]. In the context of graphical models, few mod-
els specify conditional Poisson distributions [24, 25], but
without considering latent variables. In the absence of
a closed-form joint distribution, we adopt a tractable
pseudo-likelihood approach [23], where instead of opti-
mizing the exact likelihood of Eq. (1), we consider the
approximation:

P (A|Θ) =
∏
i<j

P (Aij , Aji|Θ) ≈
∏
i,j

P (Aij |Aji, Θ) , (4)

which is available in closed-form as it requires only the
conditional probabilities, which we specified above. The
equality holds only when Aij and Aji are conditionally
independent, the common assumption in network gener-
ative models, as in that case P (Aij |Aji, Θ) = P (Aij |Θ).
This is not our case since we relax this assumption and

Eq. (4) is only an approximation. This approach has
also been considered in dyadic-dependent models [26],
for community detection in networks [27], and for local
Poisson graphical models [24]. A visual overview of our
model is shown in Fig. 1.

AjiAij

η w

vjui viuj

∀(i, j) ∈ E

FIG. 1: Graphical model representation. Aij and
Aji are the edges involving the same pairs of nodes
(i, j); η, w, u, v are the latent parameters Θ; E denotes
the set of network edges.

Inference with expectation-maximization

The goal is to find the community and reciprocity pa-
rameters, i.e., Θ, given the adjacency matrix. Defining
Lpsij (Θ,Aji) = logP (Aij |Aji, Θ) and neglecting the fac-
torial term which is independent of these parameters, we
have the log-pseudo-likelihood:

Lps(Θ) =
∑
i,j

Lpsij (Θ) =
∑
i,j

(Aij log λij − λij) . (5)

We aim at maximizing this quantity, but the presence
of the logarithmic term makes this maximization diffi-
cult. However, using a variational approach by means
of Jensen’s inequality, it can be shown (see Supplemen-
tary Information Sec. S1A) that maximizing Lps(Θ) is
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equivalent to maximizing

Lps(Θ, ρ, φ) =
∑
i,j

Aij ρ(1)ij
∑

k,q

φijkq log uikvjqwkq

−
∑
k,q

φijkq log φijkq

 +Aij ρ
(2)
ij log ηAji

−Aij
(
ρ
(1)
ij log ρ

(1)
ij + ρ

(2)
ij log ρ

(2)
ij

)
−
∑
k,q

uikvjqwkq − ηAji

 , (6)

with respect to Θ, ρ =
(
ρ(1), ρ(2)

)
, and φ, where

ρ
(1)
ij =

λ0ij
λ0ij + η Aji

, ρ
(2)
ij =

η Aji
λ0ij + η Aji

, (7)

φijkq =
uikvjqwkq

λ0ij
. (8)

Constraints to the parameters can be arbitrarily
added, e.g.,

∑
k uik =

∑
k vik = 1, by incorporating La-

grange multipliers inside Eq. (5) and repeating similar
calculations, see Supplementary Information Sec. S1B
for more details. In our numerical experiments, we con-
sider both constrained and unconstrained cases. We can
perform this optimization by alternatively updating the
various parameters, with an expectation-maximization
(EM) algorithm. At each step, one updates ρ and φ us-
ing Eqs. (7)-(8) (E-step) and then maximizes Lps(Θ, ρ, φ)
with respect to Θ by setting partial derivatives to zero
(M-step). For instance, the update equation for η is ob-
tained by considering the partial derivative:

∂Lps

∂η
=
∑
i,j

[
Aijρ

(2)
ij

η
−Aji

]
. (9)

Setting this to zero and defining M =
∑
i,j Aij , we ob-

tain:

η(t+1) =

∑
i,j Aijρ

(2)
ij∑

i,j Aij
=
η(t)

M

∑
i,j

AijAji

λ
(t)
ij

. (10)

The whole routine is described in Algorithm 1 and the
detailed derivations are in the Supplementary Informa-
tion Sec. S1. This algorithm is computationally efficient
and scalable to large system sizes as it exploits the spar-
sity of the dataset. Indeed, all the updates involve in the
numerator sums over Aij , hence only the non-zero entries
count, giving an algorithmic complexity of O(M K2).

Algorithm 1 CRep: EM algorithm
Input: network A = {Aij}Ni,j=1,

number of communities K
Output: membership vectors u = [uik] , v = [vik];

network-affinity matrix w = [wkq]; reciprocity
parameter η.

Initialize u, v, w, η at random.
Repeat until convergence:

1. Calculate ρ(1) and φ (E-step):

ρ
(1)
ij =

λ0ij
λ0ij + η Aji

, φijkq =
uikvjqwkq

λ0ij

2. Update parameters Θ (M-step):
i) for each node i and community k update mem-

berships:

uik =
1

γui

∑
j,q

Aijρ
(1)
ij φijkq

vik =
1

γvi

∑
j,q

Ajiρ
(1)
ji φjiqk

ii) for each pair (k, q) update affinity matrix:

wkq =

∑
i,j Aijρ

(1)
ij φijkq∑

i,j uik vjq

iii) update reciprocity parameter:

η =
η(t)

M

∑
i,j

AijAji

λ
(t)
ij

Note: γui , γvi are quantities that are defined differently
for constrained and unconstrained values of ui and vi.
In the constrained case, they correspond to Lagrange
multipliers; see Supplementary Information Sec. S1B.

A benchmark generative model with communities
and reciprocity

So far we have focused on recovering the parameters
given the data, i.e., the inference. In this section, in-
stead, we propose a benchmark probabilistic generative
model to generate synthetic data with intrinsic commu-
nity structure and a given reciprocity value. It takes
as input a set of membership vectors, ui and vi, affin-
ity matrix w and reciprocity parameter η; the output
is a directed network with adjacency matrix A. In this
formulation, edges between a given pair of nodes are gen-
erated stochastically; one edge being generated first and
independent from the other, while the formation of the
opposite edge depends on how the first was drawn. The
pairs of edges are conditionally independent from each
other. Formally, we aim at sampling pairs of edges from
Eq. (1), which can be done by selecting a marginal
P (Aij |Θ) and a conditional distribution P (Aji|Aij , Θ).
By assuming a Poisson conditional as in Eq. (2) and a
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Poisson marginal, our model would reduce to a standard
(conditionally independent) generative model with com-
munities in the case of zero reciprocity parameter. Even
though with this choice the joint is not tractable, this is
not an issue, as we do not aim to use the joint to com-
pute quantities analytically, but rather focus on sampling
from it. Formally, given the input set of latent variables
Θ = (u, v, w, η), we draw a pair (Aij , Aji) consistently
with the joint P (Aij , Aji|Θ), in a two-step sampling rou-
tine:

1. Select with a coin-flip one direction, (i, j) or (j, i).
Say we select (i, j).

2. Sample Aij from the marginal

P (Aij |Θ) = Pois(Aij ;mij) , (11)

where

mij =
λ0ij + ηλ0ji
(1− η2)

(12)

is the mean of the joint distribution consistent with
the conditional probability (see Supplementary In-
formation Sec. S1C).

3. Sample Aji from the conditional

P (Aji|Aij , Θ) = Pois(λ0ji + η Aij) , (13)

using the previously extracted value of Aij .

The Poisson distribution may generate multiple edges
between a pair of nodes, so this model may create multi-
graphs. This is consistent with the interpretation that
Aij is the number, or total weight, of links from i to j. If
we wish to generate binary networks where Aij ∈ {0, 1},
we use the fact that the Poisson and Bernoulli distribu-
tions become close in the sparse limit. To enforce spar-
sity, it is sufficient to multiply the λ0ij by a constant c, as
the mij in Eq. (12) will also be automatically rescaled by
the same quantity. The constant can be fixed by choosing
a value for the expected number of (weighted) edges:

E [M ] =
∑
i,j

c λ0ij + c η λ0ji
1− η2

=
c

1− η
∑
i,j

λ0ij (14)

→ c = (1− η)
E [M ]∑
i,j λ

0
ij

. (15)

Imagine now a practitioner willing to control for the
relative contribution of community and reciprocity in
generating edges. Our model naturally allows this possi-
bility, as this is encoded by η. To see this explicitly, we
calculate the fraction of edges generated by community
effects only:

crratio :=

∑
i,j λ

0
ij

E [M ]
= 1− η , (16)

where we used Eq. (12) to rewrite the denominator.
Thus, by varying η in the input, one automatically tunes
the interplay community vs reciprocity: η close to 0 gives
a network whose edges depend mostly on the commu-
nity structure imposed by the membership vectors; in-
stead, η close to 1 results in a network with lower im-
pact of community structure, i.e., reciprocity has also
significant impact on edge formation. Notice that it is
not possible to have a contribution purely due to reci-
procity, as this phenomenon implicitly requires the exis-
tence of another mechanism to produce one of the two
possible edges, here the community structure. This can
also be seen by observing that Eq. (12) can be rewritten
as mij = λ0ij + η

1−η2
(
η λ0ij + λ0ji

)
; while the first term

only depends on communities, the second term depends
on both communities and reciprocity and they cannot be
separated independently.

Predicting network reciprocity

In directed networks, reciprocity r is usually defined as
the fraction of edges that are reciprocated [1], although
other definitions exist to capture this feature [14, 28].
With our probabilistic model, we can compute the ex-
pected value of a related quantity

rw :=

∑
i,j [Aij Aji]∑
i,j [Aij ]

, (17)

which corresponds to reciprocity in the case of binary
adjacency matrices. A natural question is thus how this
observable quantity is related to the reciprocity parame-
ter η. In fact, we show that, provided some assumptions
for the second moment E

[
A2
ij

]
(see Supplementary In-

formation Sec. S1D), η is a lower bound for it:

E [rw] = η +

∑
i,j

[
λ0ijmji + ηm2

ji

]∑
i,jmij

≥ η . (18)

The tightness of this bound depends on the latent vari-
ables through λ0ij , (implicitly) mij , and mji. Empiri-
cally, we find that in the majority of the experiments the
bound is very tight, i.e., E [rw] ≈ η and the other terms
in Eq. (18) are much smaller than η in models with the
conditional independence assumption, such as our pro-
posed model with η = 0, E [rw] =

∑
i,j mij mji∑

i,j mij
. In fact, in

these models, the term
∑
i,jmijmji is often very small –

we show empirical evidence of this later; therefore, even
in networks with high reciprocity, they could poorly re-
cover it. The empirical indication for practitioners is that
networks generated by models with the conditional inde-
pendence assumption have reciprocity values significantly
different from those observed in real data.
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Predicting reciprocated edges

The dependence structure between pairs of edges
should allow us to predict the existence of a reciprocated
tie if an edge in the opposite direction is observed, such
as the citation of a paper if an author has been cited
before by someone else. This is a kind of link predic-
tion task, which lets us test the dependence assumption.
It is also a principled way of comparing the accuracy of
various generative models for datasets where no ground
truth for the latent variables is known.

Conditional edge prediction can be formulated as fol-
lows: what is the probability of an edge i→j conditioned
on observing the opposite existing edge (or non-existing
edge) j→ i ? Our model naturally outputs this condi-
tional probability. In contrast, a generative model that
assumes conditional independence between edges is not
capable of exploiting this extra information. It could only
estimate marginal probabilities that do not depend on ob-
serving the opposite edge as it uses only the parameters
such as community memberships and the affinity matrix.
Our model is not capable of fully estimating marginal
distributions but nevertheless can estimate its expected
value as in Eq. (12). This is often the main quantity used
in prediction tasks, as it plays the role of a score for es-
timating the entries Aij . Therefore, with our model we
can also predict regular edge existence, where we simply
aim at predicting an edge without any extra information
but the inferred parameters.

In our experiments below, we test various generative
models for both regular and conditional edge prediction
by giving them access to 80% of the possible pairs of
nodes in the network (the training data) and then ask-
ing them to predict the existence of one edge in the pair,
given observing the value of the other of the remaining
pairs of nodes (the test data). As performance metrics,
we measure the AUC on the test data, i.e., the proba-
bility that a randomly selected edge has higher expected
value than a randomly selected non-existing edge. We
compute both the regular AUC by using as a score the
expected value EP (Aij |Θ) [Aij ] and the conditional AUC
(AUC−cond), which uses EP (Aij |Aji,Θ) [Aij ] as the score,
i.e., the expected value over the conditional distribution.
The latter can only be computed for our algorithm, as
for the others the marginal distribution is the same as
the conditional, and thus the two AUC values coincide,
see Sec. “Materials and methods” for more details.

Results on real and synthetic data

We now demonstrate our model by applying it to
both real and synthetic data. In the real-world datasets
available to us, we only have a directed network of ob-
served interactions, i.e., there is no available ground
truth for the actual membership and reciprocity param-
eters; consequently, their relative contributions in edge
formation cannot be tuned. Thus, we first validate our

model and competing algorithms on synthetic data pro-
duced with different generative models, testing the abil-
ity to: i) generate sample networks that replicate rele-
vant network quantities like reciprocity, similar to those
observed on the input networks; ii) perform edge predic-
tion tasks. We then investigate our model’s performance
on real-world datasets. In the tests below, we use our
model in various ways: the constrained version with con-
straints on the membership parameters u and v such that∑
k uik =

∑
k vik = 1, ∀i (CRep), the non constrained

version (CRepnc), and our model with η = 0 (CRep0),
i.e., without considering the reciprocity effect. For com-
parison, we use two generative models with latent vari-
ables: a community detection-only generative model with
a Maximum Likelihood approach [15] (MT), which was
the inspiration for the building block of our model in the
case η = 0, and a Bayesian Poisson matrix factorization
(BPMF) commonly used in recommendation systems [29].
For the edge prediction task on real data, we also con-
sider a supervised learning link-prediction routine (OLP)
with topological predictors and the implementation of
Ghasemian et al. [30] (see Supplementary Information
Sec. S4C for details).

Performance for synthetic networks

We study various types of synthetic networks, gener-
ated by three different models to cover several network
topologies. Two of them cover the extreme scenarios
of networks generated, accounting only for community
structure or only for reciprocity. For the former we use
the standard stochastic block model (SBM) [9] and for
the latter the reciprocity model of Holland and Leinhardt
(HL) [10]. Our model, instead, is designed to tune the
relative impact of community structure and reciprocity
in determining edges, by varying the parameter η. Thus,
we use the benchmark generative model described above
to interpolate between these two extremes by tuning η:
for small values we recover the stochastic block model,
whereas for higher values we recover a structure simi-
lar to Holland and Leinhardt’s model. The generative
process is described in detail in the Sec. “Materials and
methods”. As a remark, the exact joint likelihood of CRep
is not determined in closed-form, however all the models
used here for comparison adopt either its Poisson condi-
tional distribution (our model with η > 0) or its Poisson
marginal distribution (all the other models). Thus exper-
iments here are aimed at highlighting differences in the
various models’ assumptions. By varying the network
sparsity and the impact of communities and reciprocity,
we illustrate types of structure that may exist in real-
world data, and test each algorithm’s robustness against
them on various tasks including edge prediction and the
ability to reproduce sample networks that replicate rele-
vant network quantities.

Recovering topological properties An important prop-
erty of a model is the ability to generate network samples
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that resemble what is observed in real data. We test this
ability by considering topological properties like degree
distribution, reciprocity, and hierarchical structure; we
calculate their values on network samples which are gen-
erated with the various generative models by using the
inferred parameters from the given input data. Specifi-
cally, we consider networks generated synthetically as ex-
plained above, and for each individual network we infer
the parameters by each model, and use them to generate
five network samples. We compare topological properties
of these samples with those observed on the ground truth
networks used to infer the parameters.

In particular, we are interested in measuring reci-
procity, as the networks generated by algorithms only
based on community structure are not capable of reflect-
ing the observed value of the reciprocity in the ground
truth network, a shortcoming of these models which in-
deed limits their applications. The empirical evidence
of this observation was part of the motivation to study
this problem. In the experiments, we use the standard
definition of reciprocity r, i.e., the ratio of the number
of edges pointing in both directions to the total number
of edges in the graph (we use the python implementa-
tion in networkx). As anticipated, in networks generated
with the stochastic block model, r is often close to 0, see
Supplementary Information Sec. S3A. Instead, a more
interesting scenario is that of networks generated with
the main purpose of recovering reciprocity, as in the HL
model. This is an example of an exponential random
graph model where reciprocity and sparsity are the two
topological properties controlled in input. It is also one
of the few cases where this type of models is analytical,
see Supplementary Information Sec. S2. In this model,
r is tuned by a parameter α so that the higher its value,
the higher the reciprocity. Notice that, as usual in expo-
nential random graphs models, latent variables such as
communities are not considered. This model generates
unweighted networks, hence r ≡ rw. Fig. 2 shows that
CRep significantly outperforms all the other generative
models in recovering rw (top) and r (bottom), as mea-
sured on the sampled networks. The gap between the
values of r and rw on the sampled networks is due to the
mismatch between the binary adjacency matrices of the
networks generated with the HL model (input data) and
the weighted sampled ones generated with the various
generative models, which use Poisson distributions.

Similar results are obtained for the networks gener-
ated with our benchmark generative model. Also in this
case, CRep captures reciprocity significantly better than
the other models, consistently across values of input η
but also for fixed η but different sparsity and degree of
overlapping communities. We leave details in the Sup-
plementary Information Sec. S3A.

We turn now our attention to topological properties
other than reciprocity, to investigate how these genera-
tive models perform in recovering various relevant prop-
erties that might be of interest for a practitioner. Indeed,
other possible mechanisms underlying network interac-

FIG. 2: Reciprocity in HL networks. Synthetic
networks with N = 1000 nodes generated with the
model proposed by Holland and Leinhardt by varying
the reciprocity parameter α. Results are empirical
averages and standard deviations over 15 samples of
three independent synthetic networks (5 samples per
input network). The red markers indicate the average
on the three input networks. (top) The quantity rw as
defined in Eq. (17); the empirical average over the
samples and the theoretical expectation as in Eq. (18)
coincide, hence we omit the markers for the empirical
value; η̂ is the inferred parameter in CRep and CRepnc.
(bottom) Standard reciprocity r. Notice that r ≡ rw for
the input data, but this is not true for the samples, as
the generative models considered here generate weighted
edges, i.e. the matrix A is in general not binary. Error
bars are smaller than marker size. Unless otherwise
stated, this will be the case in all of the figures.
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tions are those that involve more than two individuals
(which is the case for reciprocity), namely clustering and
hierarchical structure. The first describes the tendency
of nodes to form edges within the same neighborhood,
hence it involves at least three people. The second in-
volves the notion that the directionality of an unrecip-
rocated edge indicates a hierarchical difference, and this
is a global measure in that it requires the whole net-
work for its computation. In our experiments, we find
that all models are able to retrieve the degree distribu-
tion with good accuracy, while we cannot draw any con-
clusion about the recovered clustering coefficients, as we
observe that the empirical values are too small to no-
tice significant differences (we do not report them here).
We focus instead on recovering ranking of nodes, an ap-
plication relevant when nodes have a score representing
some intrinsic notion of relative strength or prestige. For
this, we use SpringRank [31], an algorithm for inferring
hierarchies in directed networks that assigns real-valued
scores to nodes; we calculate the Gini index on these
scores to provide a global measure for the whole net-
work; a high Gini index means strong hierarchy, while
a low value means that the network is less hierarchical.
Comparing the average over the five samples, we find that
CRep and CRep0 are able to perfectly retrieve the Gini in-
dex of the original network, while the other models tend
to overestimate it, see Supplementary Information Sec.
S3A. This is consistent over the various synthetic net-
work topologies. Notice that this topological property is
not influenced by the value of η or the fraction of nodes
with mixed-membership used to generate networks, while
it decreases as the average degree and α increase.

Edge prediction We test the algorithms’ ability in
edge prediction tasks, specifically conditional and reg-
ular edge prediction. As we can see from Fig. 3, our
model outperforms the others in conditional edge pre-
diction, showing that it is able to efficiently exploit the
additional information about the existence of the oppo-
site edge. The performance gap increases with η, as for
high values the reciprocity plays a bigger role in edge for-
mation. In the opposite scenario of low η, the impact of
reciprocity becomes negligible compared to community
structure, and in this case we recover the same results as
for the other algorithms. This is expected as our model
infers small values of η in this case, thus in practice re-
ducing to a conditional independent model as the oth-
ers. Performance in terms of regular edge prediction is
comparable to the other algorithms for small η, while it
drops for intermediate values and then increases again as
η grows. CRep and CRepnc are very robust in terms of
conditional edge predictions as we vary the fraction of
nodes with overlapping community membership and the
average degree, while fixing η = 0.5. Indeed, their per-
formances are significantly better than that of the other
algorithms and do not decrease with increasing overlap-
ping communities and sparsity. Moreover, we find more
stable results also in terms of regular edge prediction,
where CRep and CRepnc have constant values across the

different input parameters, outperforming other meth-
ods in critical ranges, e.g., small average degree or high
overlap between communities. We leave details in Sup-
plementary Information Sec. S3B. These synthetic tests
suggest that working with conditional probabilities re-
sults in more robust estimates of the probability that an
edge exists if we have access to the edge in the opposite
direction. Performance improvement is more significant
when community structure is not the predominant mech-
anism in edge formation.

For sake of completeness, we also validate the model
on community detection tasks and observe good per-
formance of CRep in recovering communities when reci-
procity has intermediate or low level. Notice, however,
that community detection is not the main focus of our
model, as we expect the impact of communities in deter-
mining the likelihood of an edge to decrease as reciprocity
increases, see Supplementary Information Sec. S3C. In
fact, lower performance in community detection might
signal the presence of other mechanisms for edge forma-
tion, like that played by reciprocity. Hence, perfect re-
covering of communities should not be expected in these
cases.

To summarize results on synthetic networks, CRep is
capable of suitably capturing the reciprocity values ob-
served in a given network, while also retrieving hierarchi-
cal structures. Furthermore, CRep exploits the availabil-
ity of extra information in performing edge prediction,
by increased performance and robustness across various
parameters’ ranges.

Performance for real networks

Above, we evaluated the ability of our model, CRep, to
generate network samples that have reciprocity values as
expected in input and tested its performance in edge pre-
diction. In this section, we examine these abilities on real
world datasets. We apply our method to datasets from
a diverse set of fields, with sizes ranging up to N ∼ 104

nodes and up to E ∼ 105 links (see Table S1 and Sup-
plementary Information Sec. S4A for details). Together,
these examples cover various types of social relationships,
communication interactions, transportation systems, and
patterns of citations.

Recovering topological properties We apply the same
procedure as before to infer the parameters Θ =
(u, v, w, η) from data (this time, real networks) and then
generate synthetic network samples based on them. Also
in this case, CRep greatly outperforms the other models
in recovering r, consistently across datasets. We show as
an example in Fig. 4 the results on the Erasmus dataset
(Erasmus Mobility Network 2014 − 2018) [32], and we
leave the others in the Supplementary Information Sec.
S4B.

We cannot draw general conclusions in terms of re-
covering the clustering coefficient and the Gini index of
SpringRank scores, as results vary widely depending on
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FIG. 3: Edge prediction in benchmark networks.
Synthetic networks with N = 2100 nodes and K = 3
communities of equal-size unmixed group membership
generated with the benchmark generative model
proposed above by varying the reciprocity parameter η.
The results are averages and standard deviations over
three independent synthetic networks and over 5-folds
of cross-validation test sets. The accuracy of edge
prediction is measured with AUC and the baseline is
the random value 0.5.

the datasets, see Supplementary Information Sec. S4B
and Fig. S6. As we mentioned before, these are topo-
logical properties that involve more complex interactions
than pairwise, as in the case of reciprocity (clustering
involves triangles and SpringRank score is a global mea-
sure). This suggests that, in order to have better perfor-
mance, one would need to develop more complex mod-
els, for instance extending the ideas behind CRep to
capture triadic interactions, possibly guided by domain-
knowledge about how triadic interactions and reciprocity
are related [33]. We leave this for future work, noting that
while exponential random graph models can do this, they
do not include latent community structure (analogously
as for reciprocity).

Previously, we have discussed network-related quanti-
ties controlled by η, such as the expected fraction of edges
purely due to communities (crratio) or the quantity rw.
Here we illustrate how the various real networks differ in
the inferred values of η, which we denote as η̂. In par-
ticular, we show in Fig. 5 how η̂ varies according to the
reciprocity of these networks, unveiling a non-trivial pat-
tern. While we see a general trend of η̂ increasing with
r, there are interval ranges of r for which η̂ varies widely
across networks, and vice-versa. For example, we see that
for r ∈ [0.6, 0.8], η̂ ranges in [0.1, 0.7]. This high variabil-
ity suggests that r is the result of a complex combination
of communities and reciprocity. We notice, for instance,
that for high school friendship networks (HST and DT), η̂
is low (i.e., in [0.1, 0.3]), showing that many reciprocated

edges are explained by community structure. Instead,
for online dating (POK) and communication networks
(EU and DNC), we observe high values of η̂, signaling a
lower impact of communities, as reciprocity plays a big-
ger role. This reinforces the need to include in network
models both mechanisms for explaining edge formation.
Notice that these results are possible not only because
our model accounts for reciprocity through an explicit
parameter η, but also because it infers reciprocity values
close to the observed ones, while the other methods fail
at this, see Fig. S5.

FIG. 4: Reciprocity in the Erasmus datasets.
Results are averages and standard deviations of r over 5
samples generated with the various generative models.
The algorithms use the inferred η and community
parameters of the dataset – Erasmus in this plot – to
generate synthetic network samples. Red markers
indicate the values of r in the real datasets.

Edge prediction In the absence of ground truth, as
in most real world networks, we test the ability in edge
prediction by cross-validation, as done for synthetic net-
works. Table S3 shows the results in terms of AUC for
the generative models CRep, MT, BPMF, as well as for
OLP; the latter is a type of supervised learning technique
which uses network topological information as features to
predict the entries of A. CRep and OLP show the best
results, with CRep having high performance for social
networks. However, if we consider the conditional AUC,
then CRep outperforms all the others in the majority of
the datasets, as also observed in synthetic data. This
confirms the ability of our model to efficiently exploit
the additional information from the adjacency matrix to
boost performance in terms of edge prediction.
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FIG. 5: Reciprocity and η̂. Scatterplot with
observed reciprocity (y-axis) and η̂ inferred in CRep
(x-axis); points are individual real datasets. The dashed
grey line indicates the perfect correspondence between r
and η̂. Marker shape denotes the type of network as
defined in Table S1.

Case study: application of CRep to the Erasmus
student exchange network

We illustrate our model on a real dataset to show var-
ious analysis that a practitioner can perform. We con-
sider a network representation of the Erasmus student
exchange program in 2018 [32], denoted as ERs18 in Ta-
ble S1. A node represents a higher education institution
and an edge between nodes i and j denotes how many
students where sent from i to spend a portion of their aca-
demic year abroad at institution j, as part of their study
program towards a degree (Bachelor, Master, or PhD).
This program is supported by the European Commission
and involves N = 4389 institutions (mainly European),
with a total ofM = 90972 participating students in 2018.
We recover community partitions from the network data
using both CRepnc and MT, they have similar and high
performance in edge prediction according to AUC (see
Table S3), and we fix K = 6 communities from cross-
validation. In Fig. 6, we notice that while both models
find several groups that closely correlate with countries,
CRepnc tends to put German institutions (left triangles)
more in the same group (blue) and shifts few institutions
in the red group, which seems made of mainly universi-
ties with strengths in engineering and technology (e.g.,
Universitat Politecnica de Catalunya, Politecnico di Mi-
lano and Institut Polytechnique de Grenoble). For in-
stance, Università di Bologna, Federico II di Napoli and
Padova have lower ui,red than what is predicted without
accounting for reciprocity, instead Slovenská technická
univerzita v Bratislave, Kauno Technologijos Universite-
tas and Universidad de Oviedo increase their membership
in this group.

In addition, CRepnc places more institutions with
higher membership in the green group, see Fig. 6 right
(hard membership). While there is no apparent com-
mon attribute between these (e.g., country), we find that
many nodes with high “green” entry of ui tend to re-
ciprocate more edges. Specifically, they have a high
fraction of out-neighbors such that λ0ij is much smaller
than λ0ji. That is, the edges Aij such that Aji also ex-
ists, have a lower impact in determining the value of
ui in the algorithm. In fact uik ∝

∑
j,q Aijρ

(1)
ij φijkq =∑

j,q
Aij uikvjqwkq

λ0
ij+η Aji

, see Eq. (7). Hence, if the denomina-
tor is high because of Aji, the weight of the edge Aij
decreases. Nodes with many such Aij tend to have lower
entries uik and thus lower λ0ij . This is a qualitative ex-
planation for having different membership, however the
situation is more complicated than this, as one needs to
account for the effects on the whole network. In fact,
also vjq changes between the two algorithms, for a simi-
lar reason, thus also contributing to a different uik.

The primary benefit of CRep, however, lies not in its
ability to recover the communities but in what it reveals
about the reciprocity patterns in the network. Home
and receiving institutions must sign an inter-institutional
agreement to allow for student exchanges between them.
While institutions may sign them because of clear affini-
ties between their educational training offerings (e.g.,
both universities are strong in natural science), they
might also do so because of some mechanisms involving
reciprocity, as hosting students costs resources. More-
over, reciprocity could be further increased by previous
knowledge or collaborations between individual faculties,
thus institutional reciprocity may be also driven by fac-
ulty reciprocity. In addition to the communities them-
selves, our model also returns η, which can reveal fea-
tures of the data related to such reciprocity effects not
seen with standard generative models, such has crratio
or E [Aij |Aji, Θ]. We find a maximum likelihood value of
η = 0.4, signaling a significant reciprocity effect. In fact,
according to Eq. (16), on average 40% of the edges are
influenced by reciprocity.

While η gives a global picture of the whole network,
our models still allows to distinguish the impact of reci-
procity on individual edges. For instance, if an institution
i accepts many students from j, then j might be more
willing to accept students from i, even though i’s fea-
tures might not match j’s preferences. If we distinguish
the ui as the set of preferences of i and vj as the set of
attributes of j, then our model will naturally convey this
through high λ0ij and low λ0ji for such a case. CRep is
able to capture these situations quantitatively, by means
of the quantities crij = λ0ij/mij (a crratio per edge) with
values in [0, 1] which measures the relative contribution
of communities alone to determine edges between i and
j. Focusing on a single institution i, one can analyze the
difference dij = crij − crji ∈ [−1, 1] for all j such that
both Aij , Aji > 0 and find different reciprocity patterns,
as we show in Fig. 7. Here we plot three extreme cases
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FIG. 6: Erasmus 2018 community structure. For visualization clarity, we show the subnetwork made of the
10% biggest institutions and the 3000 edges with highest weights (inference was performed on the whole network).
First three columns are one of the K = 6 groups, node color intensity increases with uik, so that darker nodes have
stronger membership u in that group, each color is a group (mixed membership) and nodes with light blue border
are nodes that change the most the membership in the two algorithms; for each group k, we only show nodes that
have uik > 0.1. Rows are CRepnc(1st and 3rd) and MT (2nd and 4th). Node and edge size are proportional to the
size of an institution measured by the total number of outgoing and incoming students. Node shapes denote country.

where i has most of the dij being less, equal or greater
than 0. The Universidad Pablo de Olavide in Sevilla has
mostly dij < 0 (plotted in red), meaning that reciprocity
has a strong effect in determining its out-going edges to
universities that instead send students to Sevilla mostly
out of community preference. The opposite case is that of
Technische Universität München, which has most of the
dij > 0 (plotted in blue), signaling that it tends to se-
lect its out-going edges more out of preference than their
counterparts, who tend to reciprocate instead. Univer-
sità degli Studi di Firenze is an example of an institution
with several dij close to 0 (plotted in white), meaning
that most of its reciprocated edges are due to commu-
nity affinities. In other words, Firenze selects out-going
j based on preference and those who select Firenze do
the same, so the impact of reciprocity is low. Apart from
these three extremes, many universities display a range of
such behaviors; we give an example of Universidad Carlos
III de Madrid, which has a balanced fraction of recipro-
cated edges covering these three cases (there are about
1/3 of blue, red, and white edges in the corresponding
figure).

Discussion

CRep is a mathematically principled generative model
for capturing both community and reciprocity patterns
in directed networks. It relies on relaxing strict con-
ditional independence assumptions on edges that limit
the applicability of standard methods on real problems
where reciprocity plays an important role. Its algorithmic
implementation is efficient and scalable to large system
sizes. The corresponding generative model allows for the
creation of synthetic networks with the desired interplay
between community and reciprocity in determining the
edges, while allowing the tuning of network sparsity.

In addition to providing all the analysis tools typical of
standard generative models with communities, our model
makes it possible to answer questions about reciprocity in
networks that were not previously possible, for instance
performing probabilistic conditional edge prediction and
estimating the relative contribution of community and
reciprocity in determining edges. We show how real net-
works display a wide range of the reciprocity parameter,
signaling the variety of possible patterns for this prop-
erty. In the context of the Erasmus student exchange
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(a) Universidad Pablo de Olavide (b) Technische Universität München

(c) Università degli Studi di Firenze (d) Universidad Carlos III de Madrid

FIG. 7: Patterns of reciprocated edges. Plots show the subnetwork made of the reciprocated edges of (a)
Universidad Pablo de Olavide, (b) Technische Universität München, (c) Università degli Studi di Firenze and (d)
Universidad Carlos III de Madrid. Node size is proportional to university size, the shape denotes country, the colors
are the highest entry of ui (for the four reference nodes - white node border) and vj (for all its neighbors). Edge size
is proportional to its weight; edge colors vary continuously from red to blue, based on the value of dij = crij − crji:
high intensity red, white and high intensity blue mean close to -1, 0 and 1 respectively.

network, our model allowed us to distinguish universities
based on their pattern of reciprocated edges.

More generally, our model shows how we can relax
strict conditional independence assumptions on edges
and showcases possible consequences in doing this. This
presents an opportunity for researchers to rethink the
fundamental assumptions behind generative models, and
present models that may open doors to new theories and
questions. We make one step in this direction, as our
model connects two popular problems that are mainly
treated independently: the inference of communities in
networks and generating directed networks where reci-
procity plays a relevant role. We used this connection to
obtain networks with community structure and values of
reciprocity consistent with those observed in real data.

Both the assumption and the model we have presented
are only the first step in a broader line of work that inves-
tigates how certain topological properties are reflected in

networks with latent community structure as dominant
mechanism in edge formation. There are a number of
directions in which this work could be extended. We
have considered here a simple way to account for reci-
procity and break conditional independence, by consid-
ering a unique parameter for the whole network. Our
model could be extended to account for node-dependent
parameters, where reciprocity varies between individuals.
In addition, possible extensions may incorporate extra in-
formation such as attribute or signals on nodes [34–38],
edges of different types as in multilayer networks [15]
and dynamics in time [39–44]. Reciprocity is one of the
many effects that could play a role in determining how
nodes interact in a network. One could go further than
this by considering incorporating quantities that account
for triples of individuals, for instance clustering coeffi-
cient, transitivity or global centrality measures. This is
something that exponential random graphs or stochastic
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actor oriented models are capable of [13, 45–48], without
including latent community structure but rather fitting
network statistics. In probabilistic generative models,
this would require further breaking conditional depen-
dencies between edges, potentially increasing the model
complexity to encompass more complicated situations.
With our work, we made the first step in this direction.

While there is no unique generative model that cap-
tures all the possible network properties well, our work
illustrates how to target reciprocity. As our original mo-
tivation to study this problem came from the realization
that standard generative models fail to generate synthetic
networks with meaningful values for this property, our
work illustrates a way in which latent variable frame-
works can be applied more realistically, and provides an
example of how network scientists can better align fun-
damental theories with realistic applications.

Materials and methods

Synthetic network generation: numerical
implementation

The synthetic networks used in the analysis are of three
types and represent different scenarios: networks with
community structure only, with reciprocity only and net-
works with both communities and reciprocity. In order to
obtain networks with only a community structure we use
a stochastic block model with different values of average
degree 〈k〉. We generate networks with K = 3 communi-
ties of equal-size unmixed group membership, N = 2100
nodes and an assortative structure (w has higher diago-
nal entries) with main probabilities p1 = 〈k〉 ∗K/N and
entries outside the main diagonal equal to p2 = 0.1 ∗ p1.
We generate three independent samples for each value of
〈k〉 ∈ [2, 20]. On the other hand, we generate networks
influenced by reciprocity only through an implementa-
tion of the reciprocity model proposed by Holland and
Leinhardt (see Supplementary Information Sec. S2 for
details). The input parameter α can be tuned to obtain
different values of network reciprocity and we generate
three independent samples for each value of α ∈ [0, 10].
We consider N = 1000 nodes and a probability to gener-
ate one of the directed-edges equal to p = 0.002. In order
to work with synthetic networks having an intrinsic com-
munity structure and a given reciprocity value, we use
the benchmark generative model proposed in this paper.
We generate networks with N = 2100 nodes and K = 3
communities by varying three different input parameters:
the average degree 〈k〉 ∈ [2, 20], the reciprocity coefficient
η ∈ [0, 1) and the fraction of nodes with mixed member-
ship over ∈ [0, 1]. While varying one of the parameter,
the others are fixed to 〈k〉 = 20, η = 0.5 and over = 0. In
detail, networks are generated in two steps. First, mem-
bership vectors u and v are generated following an equal-
size unmixed group membership and a Dirichlet distribu-
tion with parameter α = 0.1 for the entries with mixed
membership; and the affinity matrix w is generated us-

ing an assortative block structures with main probabili-
ties p1 = K/N and secondary probabilities p2 = 0.1 ∗ p1.
Thus the latent variables Θ = (u, v, w, η) are fixed. Sec-
ond, edges are drawn according to the generative model
described in the main text. Specifically, for each pair of
nodes (i, j), i) extract Aij from a Poisson of mean as in
Eq. (12); ii) extract Aji from a Poisson of mean as in Eq.
(3). This procedure results in a directed network with
the desired reciprocity and sparsity. We generate three
independent networks for each value of the three different
input parameters.

Edge prediction and cross-validation

We perform edge prediction using 5-fold cross-
validation. In each realization, we divide the dataset,
i.e., the entries Aij of the adjacency matrix, into five
equal groups selected at random. We use four of these
groups as a training set, to infer the parameters Θ. We
then use the fifth group as a test set, evaluating the
score for each Aij in this set, and calculate the AUC
value. By varying which group we use as the test set, we
get 5 trials per realization. The final AUC is the average
over these. To compute the regular AUC we use as
score the expected value EP (Aij |Θ) [Aij ] = mij as in Eq.
(12); for the conditional AUC (AUC−cond), we use as
score EP (Aij |Aji,Θ) [Aij ] = λ0ij + η Aji, i.e., the expected
value over the conditional distribution. Notice that the
latter can only be computed for CRep, as for the others
mij ≡ λ0ij , and thus the two AUC values coincide.

Inference: numerical implementation

All the generative models require inferringK, the num-
ber of communities. We select this by cross-validation.
Specifically, we run several held-out trials as explained
above by varying K and select the value of K that gives
the highest (regular) average AUC on the test sets. We
then extract the parameters of each method using their
best K. For MT, BPMF and CRep0, we extract the pa-
rameters u, v, w; in addition, for CRep and CRepnc, we
extract η. All these algorithms converge to a local op-
tima, as the likelihood landscape is not convex. Hence,
we run the algorithm 10 times for different random ini-
tializations of the parameters and select the realization
that has higher likelihood value.

Acknowledgements

The authors thank Eleanor Power and Elspeth Ready
for useful conversations. The authors thank the Interna-
tional Max Planck Research School for Intelligent Sys-
tems (IMPRS-IS) for supporting Martina Contisciani.
Funding: All the authors were supported by the Cy-
ber Valley Research Fund. Author contributions: All



14

authors derived the model, analyzed results, and wrote
the manuscript. Competing interests: The authors
declare that they have no competing interests. Data
and materials availability: All data needed to eval-

uate the conclusions in the paper are present in the
paper and/or the Supplementary Materials. An open
source implementation of the code is available online at
https://github.com/mcontisc/CRep.

[1] S. Wasserman, K. Faust, et al., Social network analysis:
Methods and applications, vol. 8 (Cambridge university
press, 1994).

[2] L. D. Molm, The structure of reciprocity. Social psychol-
ogy quarterly 73, 119–131 (2010).

[3] M. A. Nowak, K. Sigmund, Evolution of indirect reci-
procity. Nature 437, 1291–1298 (2005).

[4] D. Garlaschelli, M. I. Loffredo, Structure and evolution
of the world trade network. Physica A: Statistical Me-
chanics and its Applications 355, 138-144 (2005).

[5] K. Zhao, X. Wang, M. Yu, B. Gao, User recommenda-
tions in reciprocal and bipartite social networks–an online
dating case study. IEEE intelligent systems 29, 27–35
(2013).

[6] J. Wincent, S. Anokhin, D. Örtqvist, E. Autio, Quality
meets structure: Generalized reciprocity and firm-level
advantage in strategic networks. Journal of Management
Studies 47, 597–624 (2010).

[7] W. Li, T. Aste, F. Caccioli, G. Livan, Reciprocity and
impact in academic careers. EPJ Data Science 8, 20
(2019).

[8] M. E. Newman, S. Forrest, J. Balthrop, Email networks
and the spread of computer viruses. Physical Review E
66, 035101 (2002).

[9] P. W. Holland, K. B. Laskey, S. Leinhardt, Stochastic
blockmodels: First steps. Social networks 5, 109–137
(1983).

[10] P. W. Holland, S. Leinhardt, An exponential family of
probability distributions for directed graphs. Journal of
the american Statistical association 76, 33–50 (1981).

[11] J. Park, M. E. Newman, Statistical mechanics of net-
works. Physical Review E 70, 066117 (2004).

[12] D. Garlaschelli, M. I. Loffredo, Multispecies grand-
canonical models for networks with reciprocity. Phys.
Rev. E 73, 015101 (2006).

[13] G. Robins, P. Pattison, Y. Kalish, D. Lusher, An in-
troduction to exponential random graph (p*) models for
social networks. Social networks 29, 173–191 (2007).

[14] T. Squartini, F. Picciolo, F. Ruzzenenti, D. Garlaschelli,
Reciprocity of weighted networks. Scientific reports 3,
1–9 (2013).

[15] C. De Bacco, E. A. Power, D. B. Larremore, C. Moore,
Community detection, link prediction, and layer interde-
pendence in multilayer networks. Physical Review E 95,
042317 (2017).

[16] B. Ball, B. Karrer, M. E. Newman, Efficient and prin-
cipled method for detecting communities in networks.
Physical Review E 84, 036103 (2011).

[17] J. Lloyd, P. Orbanz, Z. Ghahramani, D. M. Roy, Ad-
vances in Neural Information Processing Systems (2012),
pp. 998–1006.

[18] P. Orbanz, D. M. Roy, Bayesian models of graphs, arrays
and other exchangeable random structures. IEEE trans-
actions on pattern analysis and machine intelligence 37,
437–461 (2014).

[19] P. Hoff, Advances in neural information processing sys-
tems (2008), pp. 657–664.

[20] D. J. Aldous, Representations for partially exchangeable
arrays of random variables. Journal of Multivariate Anal-
ysis 11, 581–598 (1981).

[21] D. N. Hoover, Relations on probability spaces and arrays
of random variables. Preprint, Institute for Advanced
Study, Princeton, NJ 2 (1979).

[22] O. Kallenberg, Multivariate sampling and the estimation
problem for exchangeable arrays. Journal of Theoretical
Probability 12, 859–883 (1999).

[23] J. Besag, Spatial interaction and the statistical analysis
of lattice systems. Journal of the Royal Statistical Soci-
ety: Series B (Methodological) 36, 192–225 (1974).

[24] G. I. Allen, Z. Liu, A local poisson graphical model for
inferring networks from sequencing data. IEEE transac-
tions on nanobioscience 12, 189–198 (2013).

[25] F. Hadiji, A. Molina, S. Natarajan, K. Kersting, Poisson
dependency networks: Gradient boosted models for mul-
tivariate count data. Machine Learning 100, 477–507
(2015).

[26] D. Strauss, M. Ikeda, Pseudolikelihood estimation for so-
cial networks. Journal of the American statistical associ-
ation 85, 204–212 (1990).

[27] A. A. Amini, A. Chen, P. J. Bickel, E. Levina, et al.,
Pseudo-likelihood methods for community detection in
large sparse networks. The Annals of Statistics 41, 2097–
2122 (2013).

[28] D. Garlaschelli, M. I. Loffredo, Patterns of link reci-
procity in directed networks. Phys. Rev. Lett. 93, 268701
(2004).

[29] P. Gopalan, J. M. Hofman, D. M. Blei, UAI (2015), pp.
326–335.

[30] A. Ghasemian, H. Hosseinmardi, A. Galstyan, E. M.
Airoldi, A. Clauset, Stacking models for nearly optimal
link prediction in complex networks. Proceedings of the
National Academy of Sciences (2020).

[31] C. De Bacco, D. B. Larremore, C. Moore, A physical
model for efficient ranking in networks. Science Advances
4 (2018).

[32] Erasmus mobility statistics, https://data.europa.eu/
euodp/en/data.

[33] P. Block, Reciprocity, transitivity, and the mysterious
three-cycle. Social Networks 40, 163–173 (2015).

[34] M. Contisciani, E. A. Power, C. De Bacco, Community
detection with node attributes in multilayer networks.
Scientific Reports 10, 15736 (2020).

[35] M. E. Newman, A. Clauset, Structure and inference in
annotated networks. Nature communications 7, 1–11
(2016).

[36] L. Peel, D. B. Larremore, A. Clauset, The ground truth
about metadata and community detection in networks.
Science advances 3, e1602548 (2017).

[37] T. Hoffmann, L. Peel, R. Lambiotte, N. S. Jones, Com-
munity detection in networks without observing edges.

https://github.com/mcontisc/CRep
https://data.europa.eu/euodp/en/data
https://data.europa.eu/euodp/en/data


15

Science advances 6, eaav1478 (2020).
[38] N. Stanley, T. Bonacci, R. Kwitt, M. Niethammer, P. J.

Mucha, Stochastic block models with multiple continuous
attributes. Applied Network Science 4, 1–22 (2019).

[39] A. Ghasemian, P. Zhang, A. Clauset, C. Moore, L. Peel,
Detectability thresholds and optimal algorithms for com-
munity structure in dynamic networks. Physical Review
X 6, 031005 (2016).

[40] C. Blundell, J. Beck, K. A. Heller, Advances in Neural
Information Processing Systems (2012), pp. 2600–2608.

[41] X. Zhang, C. Moore, M. E. Newman, Random graph
models for dynamic networks. The European Physical
Journal B 90, 200 (2017).

[42] S. Linderman, R. Adams, International Conference on
Machine Learning (2014), pp. 1413–1421.

[43] T. P. Peixoto, M. Rosvall, Modelling sequences and tem-
poral networks with dynamic community structures. Na-
ture communications 8, 1–12 (2017).

[44] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter,
J.-P. Onnela, Community structure in time-dependent,
multiscale, and multiplex networks. science 328, 876–
878 (2010).

[45] P. Block, C. Stadtfeld, T. A. Snijders, Forms of depen-
dence: Comparing saoms and ergms from basic prin-
ciples. Sociological Methods & Research 48, 202–239
(2019).

[46] T. A. Snijders, Stochastic actor-oriented models for net-
work change. Journal of mathematical sociology 21, 149–
172 (1996).

[47] T. A. Snijders, The statistical evaluation of social net-
work dynamics. Sociological methodology 31, 361–395
(2001).

[48] T. A. Snijders, P. E. Pattison, G. L. Robins, M. S. Hand-
cock, New specifications for exponential random graph
models. Sociological methodology 36, 99–153 (2006).

[49] V. A. Traag, L. Waltman, N. J. van Eck, From louvain to
leiden: guaranteeing well-connected communities. Scien-
tific reports 9, 1–12 (2019).

[50] J. Kunegis, Proc. Int. Conf. on World Wide Web Com-
panion (2013), pp. 1343–1350.

[51] H. Makse (https://hmakse.ccny.cuny.edu/).
[52] A. Clauset, S. Arbesman, D. B. Larremore, Systematic

inequality and hierarchy in faculty hiring networks. Sci-
ence Advances 1 (2015).

[53] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large
network dataset collection, http://snap.stanford.edu/
data (2014).

[54] P. Ji, J. Jin, Coauthorship and citation networks for
statisticians. Ann. Appl. Stat. 10, 1779–1812 (2016).

[55] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, Z. Su, Pro-
ceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining , KDD
’08 (ACM, New York, NY, USA, 2008), pp. 990–998.

http://snap.stanford.edu/data
http://snap.stanford.edu/data


16

Supporting Information (SI)

S1. Detailed derivations

We derive in detail the equations for inferring the parameters. We first apply a variational approach to make the
problem tractable, and then use an expectation-maximization algorithm to derive the equations of the updates.

A. Variational approach

We aim at maximizing the log-pseudo-likelihood in Eq. (5). The first step is to facilitate the maximization process
of the logarithmic term. We consider a probability distribution ρij over the two competing terms: this is our estimate
of the probability that the edges exist due to the contribution of either the community membership or the reciprocity
term. Applying Jensen’s inequality log x̄ ≥ log x:

log λij = log

(
ρ
(1)
ij

λ0ij

ρ
(1)
ij

+ ρ
(2)
ij

η Aji

ρ
(2)
ij

)
≥ ρ(1)ij log
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uikvjqwkq + ρ
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ij .

Moreover, this holds with equality when:

ρ
(1)
ij =

λ0ij
λ0ij + η Aji

and ρ
(2)
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η Aji
λ0ij + η Aji

. (S1)

Thus maximizing Lps(Θ) is equivalent to maximizing:
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∑
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We apply once more the variational approach to make the sum inside the logarithm tractable. Similarly as before,
we introduce a probability distribution φijkq such that:

log
∑
k,q

uikvjqwkq ≥
∑
k,q

φijkq log uikvjqwkq −
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φijkq log φijkq . (S2)

The equality holds when:
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Thus maximizing Lps(Θ, ρ) is equivalent to maximizing:
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with respect to Θ, ρ, φ.
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B. Expectation-Maximization updates

Equations for the updates of each of the parameters can be obtained by taking the derivative of Eq. (S4) with
respect to a given parameter and setting it to zero. For instance, for the community affinity matrix we get:

w
(t+1)
kq =

∑
i,j Aijρ

(1)
ij φijkq∑

i,j uik vjq
. (S5)

Here we show how to enforce constraints like
∑
k uik = 1, which is an arbitrary choice that can be easily incorporated

into our model. For this it is convenient to write the log-pseudo-likelihood as,

Lps(Θ, ρ, φ) = F (uik, vjq, wkq)−
∑
i,j,k,q

uik vjq wkq (S6)

and then substitute wkq from Eq. (S5) into Eq. (S6):
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The second term in the above equation does not depend explicitly on uik and vjq. In order to apply the constraint
on the maximization, we add Lagrange multipliers γui , γvi :

Lps(Θ, ρ, φ) = F (uik, vjq, wkq)−
∑
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Aijρ
(1)
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The update equation for uik is obtained by considering the partial derivative,

∂Lps

∂uik
=
∑
j,q

(
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ij φijkq

uik

)
− γui , (S9)

and setting it to zero, which yields:
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By applying the normalization constraint on the uik, i.e.,
∑
k uik = 1, and noticing that ρ(1)ij φijkq =

uikvjqwkq
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ij+η Aji

, we
can find an expression for γui :
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Similarly, we have the following update equation for v:
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C. Deriving the expected value of the marginal distribution

E [Aij ] = mij =
∑

Aij ,Aji

Aij P (Aij , Aji|Θ) (S14)
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Solving for mij yields:
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which implies:
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D. Expected value of rw

With similar calculations as before we obtain:

E [Aij Aji] =
∑
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Aij Aji P (Aij , Aji|Θ) (S22)
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To fully determine this expression we need to specify the second moment E
[
A2
ji

]
. For binary variables, we could

assume E
[
A2
ji

]
= E [Aji] = mji, as this is the case for Bernoulli distributions. With this assumption, we obtain
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mji. Alternatively, we can assume E

[
A2
ji

]
= mji+m

2
ji as is the case for the Poisson distribution,

and thus obtain E [Aij Aji] =
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ji. Finally we have:
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= η +

∑
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λ0ijmji + ηm2

ji

]∑
i,jmij

≥ η .

With this assumption, we obtain that the parameter η is a lower bound for the expected value of rw. An equivalent
expression can be derived for models that assume conditional independence, e.g., our model with η = 0. In this case
we get:

E [Aij Aji] =
∑
Aij

Aij P (Aij |Θ)
∑
Aji

Aji P (Aji|Θ) (S25)

= mijmji , (S26)

which yields:
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S2. Holland and Leinhardt reciprocity model

The model assumes an unweighted and directed network, i.e., asymmetric adjacency matrix with binary values
Aij ∈ {0, 1}, and the following joint probability:

P (A|θ, α) =
e−H(A,θ,α)

Z(θ, α)
(S28)

H(A, θ, α) = θ
∑
i<j

(Aij +Aji)− α
∑
i<j

AijAji , (S29)

where Z(θ, α) = 1 + 2e−θ + e−2θ+α is the normalization term. The parameter α controls the level of reciprocity, it
couples the two entries Aij and Aji thus making the model not factorized; edges between different pairs (i, j) are
conditionally independent given the parameters. This is one of the few analytically tractable exponential random
graph models. Due to this property, we can extract analytical marginal and conditional distributions for a pair of
nodes (i, j):

P (Aij |θ, α) =
e−θAij + e−θ−Aij(θ−α)

Z(θ, α)
(S30)

P (Aji|Aij , θ, α) =
e−Aji (θ−αAij)

1 + e−(θ−αAij)
. (S31)

These expressions can be used to sample networks with the joint distribution given in Eq. (S29). Tuning the value
of the parameter α, one generates networks with different values of reciprocity.

S3. Performance in synthetic networks

A. Recovering topological properties

Here we show the ability of the models to reproduce network samples that replicate relevant network quantities.
Fig. S1 shows r and rw as defined in Eq. (17), computed in the sampled networks of synthetic data generated with a
stochastic block model and our benchmark generative model. As expected, the reciprocity in networks generated with
the stochastic block model is always close to zero. Instead, the networks generated with our benchmark generative
model present different values of reciprocity, and CRep captures these values significantly better than the other
models, consistently across various levels of input η but also for fixed η but different sparsity. By varying the degree of
overlapping communities we obtain the same results as varying the average degree (we do not report them here). Fig.
S2 shows the Gini index computed on nodes scores obtained with the SpringRank algorithm. The Gini index provides
a global measure for the whole network, the higher its value, the more hierarchical the network is. We compare the
average over the five samples, and we find that CRep and CRep0 have reasonable accuracy in retrieving the Gini index
of the original network, while the other models tend to overestimate it. This is consistent over the various synthetic
network topologies, i.e., network generated with the stochastic block model (left), the HL model (middle) and our
benchmark generative model (left). Furthermore, we notice that this topological property decreases as the average
degree 〈k〉 and α increase, while it is not influenced by the value of η. We omit the results for the networks generated
with our benchmark generative model by varying the sparsity and the fraction of nodes with mixed-membership
because we obtain similar results to the stochastic block networks and the benchmark data by varying η, respectively.
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FIG. S1: Reciprocity in synthetic networks. Synthetic networks with N = 2100 nodes and K = 3 communities
of equal-size unmixed group membership generated with a stochastic block model (top) by varying the average
degree 〈k〉 and our benchmark generative model, by varying the reciprocity parameter η (middle) and 〈k〉 (bottom).
Results are empirical averages and standard deviations over 15 samples of three independent synthetic networks (5
sample per input network). The red markers indicate the average on the three input networks. (left) The quantity
rw as defined in Eq. (17); η̂ is the inferred parameter in CRep and CRepnc. (right) Standard reciprocity r.
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FIG. S2: Hierarchical structure in synthetic networks. Synthetic networks generated with (left) the
stochastic block model, (middle) the HL model and (right) the benchmark generative model. Results are averages
and standard deviations of the Gini index on SpringRank ranking scores over 15 samples of three independent
synthetic networks (5 sample per input network). The red markers indicate the average on the three input networks.

B. Edge prediction in synthetic networks

Here we show the results in terms of edge prediction on synthetic data generated with our benchmark generative
model by varying the average degree 〈k〉 and the fraction of nodes with mixed-membership, which we denote over. We
use both conditional and regular edge prediction and Fig. S3 highlights the robustness of CRep and CRepnc in terms
of conditional edge predictions, as their performance are significantly higher than that of the other algorithms and
do not decrease with increasing overlapping communities and sparsity. Notice also the stability of CRep and CRepnc

in terms of regular edge prediction and how they outperform the other models in critical ranges, e.g., small 〈k〉 and
high over.

FIG. S3: Edge prediction in synthetic networks. Synthetic networks with N = 2100 nodes and K = 3
communities of equal-size unmixed group membership generated with the benchmark generative model proposed
above by varying (left) the average degree 〈k〉 and (right) the fraction of nodes with mixed-membership over. The
results are averages and standard deviations over three independent synthetic networks and over 5-folds
cross-validation test sets. The accuracy of edge prediction is measured with AUC and the baseline is the random
value 0.5.

C. Community detection in synthetic data

For sake of completeness, here we show the performance of the models on recovering communities. We consider
as performance measure the F1-score (F1) and cosine similarity (CS), the former one is valid for hard membership
while the latter captures mixed-membership, we calculate for both the average over the nodes. When measuring
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the F1-score we consider the entries of maximum value of the membership vectors. Both measures are between 0
and 1 and a value of 1 means perfect reconstruction. Fig. S4 show the accuracy in networks generated with the
benchmark generative model by varying the reciprocity parameter η and for synthetic data created with a stochastic
block model by varying the average degree 〈k〉. For comparison in these last networks, we consider also the Leiden
algorithm [49], a non-generative method. Even if community detection is not the main focus of our model, we notice
the ability of CRep in retrieving communities in networks without reciprocity, while its performance decreases as
reciprocity increases. This is expected as the community impact in determining the likelihood of an edge decreases
as η increases. Notice that the benchmark data have been generated with fixed 〈k〉 = 20, thus models without
reciprocity are capable of fully recovering the community even in the case where reciprocity is there, provided that
the average degree is large enough. These synthetic tests suggest, on one side, the robustness of community detection-
only methods in recovering communities even in the presence of reciprocity; on the other side the good performance
of CRep in recovering communities when reciprocity has intermediate or low level. This is somehow expected, as this
model gives increasingly less weight to the communities as reciprocity increases, thus it is not optimized to recover
the communities when these are not fully determining edge formation.

FIG. S4: Community detection in synthetic networks. Synthetic networks with N = 2100 nodes and K = 3
communities of equal-size unmixed group membership generated with (left) the benchmark generative model
proposed above by varying the reciprocity parameter η, and (right) a stochastic block model. The results are
averages and standard deviations over three independent synthetic networks. The accuracy of community detection
is measured with (left) cosine similarity and (right) with F1-score as similarity measure, and values close to 1 means
higher similarity. The dashed lines represent random baselines, where membership ui are extracted randomly from a
Dirichlet of parameter α = 0.1 or a Gamma distribution of parameters α = 0.1 and β = 1, to enforce sparsity.
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S4. Performance in real networks

A. Real data: dataset description

We apply our approach to different types of networks, such as social, ‌ infrastructure, online communication, and
citation networks. Table S1 provides a brief overview of the datasets studied in this work, as well as their abbreviations.
All datasets, have been pre-processed as follows: i) self-loops are removed; ii) only nodes that have at least one out-
going and one in-coming edge are kept; iii) we used only the giant connected components. Some datasets require
additional specific pre-processing. Specifically, the citation networks (here: CIT05, SCC2016, ACMv9 ) require
extracting a network author-author from a network of paper-citation, so that an edge means that an author cites
another author. Furthermore, we split dynamic networks into separate individual networks where we kept only
interactions happening within a certain time window. This applies to Dutch (DT2, DT6), High school friendships
(HST11, HST12, HST2), online dating (POK0, POK6, POK12), and Erasmus (ERs14, ERs15, ERs16, ERs17, ERs18).

B. Recovering topological properties

Here we show the ability of the models to reproduce network samples that replicate relevant network quantities. For
each real network we infer the parameters by each model, and use them to generate five synthetic network samples.
Fig. S5 shows the reciprocity r. For each model, it outputs the averages and the standard deviations over the five
samples and the dashed red lines indicate the r value of the input datasets. We notice the heterogeneity of the analysed
networks and how CRep adapts to all different situations, while the other models underestimate the true value most
of the time. Fig. S6 shows the Gini index computed on nodes scores obtained with the SpringRank algorithm and
the clustering coefficient.

FIG. S5: Reciprocity in real networks. Empirical averages and standard deviations of reciprocity r over 5
samples of each real network (see Table S1 for details). The red dashed lines indicate the r on the input networks.

C. Link prediction features

Here we present the supervised learning-link prediction routine (OLP) used for comparison in the edge prediction
task on real data. In the link prediction task, scores are assigned to all possible pairs of nodes in the graph based on a
set of criteria. Then, the pairs of nodes are sorted according to their scores in an ascending order and the most-likely
links are the pairs with scores above a threshold value.

Two categories of features are used to determine the criteria of link classification: (i) global features, defined based
on the features of the entire network, such as the number of nodes, number of edges, average degree of nodes, and the
average clustering coefficient, and (ii) local features, which include the descriptive features of a single node or a pair
of nodes.

In this work, we apply the extended definition of features for a directed network of Ghasemian et al. [30]. We
also examine the effect of belonging to the same community on the local pairwise features, i.e., pairwise attributes
contribute in the link prediction only if the two nodes belong to the same community. However, we did not find
significant changes and at the price of higher computational cost, hence, we exclude this factor from the study and
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FIG. S6: Hierarchical structure and clustering coefficient in real networks. Empirical averages and
standard deviations of (top) the Gini index on SpringRank ranking scores and (bottom) the average clustering
coefficient over 5 samples of each real network (see Table S1 for details). The red dashed lines indicate the values on
the input networks.

omit the results. Considering Γ (x)out/in as the set of out/in-neighbors of node x, and d(x, y) as the distance between
nodes x and y, some of the well-known features deployed for link prediction are presented in table S2.
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TABLE S1: Datasets description.

Network Abbreviation Category N E Ref.
Dutch college DT2 Human Social Network 26 144 [50]
Dutch college DT6 Human Social Network 30 256 [50]
Highschool Friendships HST11 Human Social Network 31 100 [50]
Highschool Friendships HST12 Human Social Network 30 114 [50]
Highschool Friendships HST2 Human Social Network 62 245 [50]
Online dating POK0 Human Social Network 3562 18098 [51]
Online dating POK6 Human Social Network 3227 10696 [51]
Online dating POK12 Human Social Network 2530 7653 [51]
Physicians Phys Human Social Network 95 458 [50]
Seventh graders 7th Human Social Network 29 376 [50]
Adolescent health AdH Human Social Network 2213 11676 [50]
Advogato Adv Online Social network 3858 42188 [50]
Faculty hiring, business department BS Institutions Social Network 112 3321 [52]
Faculty hiring, computer department CS Institutions Social Network 198 2702 [52]
Faculty hiring, history department HS Institutions Social Network 140 2242 [52]
Erasmus Mobility Statistics 2014 ERs14 Institutions Social Network 2264 79532 [32]
Erasmus Mobility Statistics 2015 ERs15 Institutions Social Network 2890 79665 [32]
Erasmus Mobility Statistics 2016 ERs16 Institutions Social Network 3713 85468 [32]
Erasmus Mobility Statistics 2017 ERs17 Institutions Social Network 4200 89792 [32]
Erasmus Mobility Statistics 2018 ERs18 Institutions Social Network 4389 90972 [32]
Citation 2005 CIT05 Citation Network 2130 11153 [53]
Statistics Citation SCC2016 Citation Network 2654 21568 [54]
ACM v9 2012 ACMv9 Citation Network 8469 56801 [55]
Email Eu core network EU Email Network 834 24348 [53]
DNC Email DNC Email Network 548 3575 [50]
Wiki Talk ht Wiki Communication Network 80 164 [50]
UC Social UCS Communication Network 1302 19044 [50]
Blogs Blg Hyperlink Network 830 16107 [50]
Cattle Ctl Animal Network 24 191 [50]
FAA Preferred Routes FAA Infrastructure Network 1064 2275 [50]
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TABLE S2: Extended features used in the link prediction process for a directed network.

Feature Description
Common neighbors out/in defined for a pair of nodes: x, y: |Γ (x)out/in ∩ Γ (y)out/in|

Jaccard index defined for a pair of nodes: x, y:
|Γ (x)out/in∩Γ (y)out/in|
|Γ (x)out/in∪Γ (y)out/in|

Adamic–Adar index defined for a pair of nodes: x, y:
∑
z∈{Γ (x)out/in∩Γ (y)out/in}

1
log|Γ (z)|

Resource Allocation index defined for a pair of nodes: x, y:
∑
z∈{Γ (x)out/in∩Γ (y)out/in}

1
|Γ (z)|

Betweenness centrality a measure of node centrality based on the shortest paths
Closeness centrality defined for a pair of nodes: x, y: 1∑

y d(y,x)

Shortest Paths shortest path between nodes: x, y
Katz centralities a measure of centrality in a network
PageRank centralities a measure of the importance of a node as an adjustment of Katz centrality
Eigenvector centralities an adjustment of Katz centrality of a node in regards to the importance of its neighbors
Clustering coefficient for node x number of triangles connected to node x

number of triples centered around nodex
Preferential attachment the tendency of nodes to connect to the nodes with higher degree
Common community 1 if the pair of nodes belong to the same community, otherwise zero

TABLE S3: Edge prediction in real networks. Regular AUC and conditional AUC (AUC−cond) for all real
networks (see Table S1 for details). Results are averages and standard deviations over 5-fold cross-validation test
sets. In grey box we show the best performance over all methods, while in boldface the best results in terms of
regular AUC.

AUC AUC−cond
Dataset CRep CRepnc CRep0 MT BMPF OLP CRep CRepnc
DT2 0.71 ± 0.01 0.73 ± 0.01 0.653 ± 0.009 0.71 ± 0.03 0.72 ± 0.01 0.712 0.77 ± 0.02 0.79 ± 0.03
DT6 0.72 ± 0.03 0.76 ± 0.01 0.72 ± 0.01 0.762 ± 0.006 0.774 ± 0.008 0.737 0.83 ± 0.03 0.85 ± 0.02
HST11 0.74 ± 0.01 0.73 ± 0.01 0.63 ± 0.03 0.62 ± 0.03 0.63 ± 0.04 0.714 0.78 ± 0.02 0.76 ± 0.02
HST12 0.82 ± 0.02 0.801 ± 0.008 0.743 ± 0.004 0.74 ± 0.01 0.76 ± 0.02 0.778 0.85 ± 0.01 0.86 ± 0.02
HST2 0.771 ± 0.009 0.76 ± 0.01 0.73 ± 0.01 0.73 ± 0.01 0.71 ± 0.01 0.828 0.808 ± 0.009 0.79 ± 0.02
POK0 0.7747 ± 0.0001 0.845 ± 0.002 0.665 ± 0.002 0.7400 ± 0.0009 0.7652 ± 0.0002 0.804 0.908 ± 0.002 0.934 ± 0.002
POK6 0.758 ± 0.001 0.818 ± 0.002 0.587 ± 0.003 0.626 ± 0.002 0.6939 ± 0.0007 0.750 0.884 ± 0.005 0.909 ± 0.002
POK12 0.765 ± 0.002 0.833 ± 0.002 0.582 ± 0.002 0.606 ± 0.002 0.6723 ± 0.0006 0.739 0.905 ± 0.003 0.924 ± 0.002
Phys1 0.600 ± 0.008 0.627 ± 0.006 0.556 ± 0.009 0.57 ± 0.01 0.60 ± 0.02 0.577 0.676 ± 0.005 0.71 ± 0.01
7th 0.69 ± 0.02 0.79 ± 0.01 0.72 ± 0.02 0.800 ± 0.009 0.809 ± 0.005 0.494 0.77 ± 0.01 0.84 ± 0.01
AdH 0.678 ± 0.003 0.696 ± 0.002 0.656 ± 0.002 0.666 ± 0.003 0.627 ± 0.004 0.867 0.760 ± 0.003 0.787 ± 0.001
Adv 0.771 ± 0.002 0.8919 ± 0.0001 0.760 ± 0.003 0.887 ± 0.001 0.8907 ± 0.0005 0.940 0.830 ± 0.002 0.9333 ± 0.0005
BS 0.662 ± 0.004 0.8749 ± 0.0006 0.649 ± 0.004 0.8749 ± 0.0005 0.8746 ± 0.0009 0.711 0.66 ± 0.01 0.8750 ± 0.0006
CS 0.715 ± 0.008 0.829 ± 0.001 0.696 ± 0.005 0.830 ± 0.002 0.838 ± 0.001 0.844 0.709 ± 0.008 0.833 ± 0.001
HS 0.661 ± 0.005 0.866 ± 0.003 0.646 ± 0.003 0.866 ± 0.003 0.872 ± 0.001 0.865 0.654 ± 0.005 0.867 ± 0.003
ERs14 0.754 ± 0.001 0.9157 ± 0.0005 0.696 ± 0.009 0.9115 ± 0.0004 0.9123 ± 0.0003 0.893 0.810 ± 0.001 0.9278 ± 0.0002
ERs15 0.79 ± 0.01 0.9361 ± 0.0002 0.72 ± 0.02 0.9330 ± 0.0002 0.9312 ± 0.0002 0.929 0.82 ± 0.01 0.9454 ± 0.0002
ERs16 0.8057 ± 0.0006 0.9454 ± 0.0002 0.7064 ± 0.0004 0.9402 ± 0.0003 0.9419 ± 0.0001 0.944 0.8346 ± 0.0006 0.9552 ± 0.0002
ERs17 0.822 ± 0.005 0.9484 ± 0.0001 0.734 ± 0.002 0.9433 ± 0.0002 0.9468 ± 0.0002 0.950 0.838 ± 0.005 0.9568 ± 0.0002
ERs18 0.8334 ± 0.0006 0.9501 ± 0.0001 0.732 ± 0.002 0.9444 ± 0.0002 0.9490 ± 0.0002 0.952 0.8476 ± 0.0006 0.9579 ± 0.0001
CIT05 0.910 ± 0.002 0.9189 ± 0.0008 0.901 ± 0.001 0.918 ± 0.001 0.908 ± 0.001 0.954 0.928 ± 0.002 0.9389 ± 0.0008
SCC2016 0.893 ± 0.001 0.923 ± 0.001 0.8938 ± 0.0009 0.925 ± 0.001 0.9211 ± 0.0007 0.946 0.901 ± 0.001 0.925 ± 0.001
ACMv9 0.926 ± 0.001 0.9350 ± 0.0007 0.919 ± 0.001 0.9352 ± 0.0001 0.9254 ± 0.0006 0.968 0.941 ± 0.001 0.9525 ± 0.0007
EU 0.795 ± 0.007 0.9297 ± 0.0004 0.760 ± 0.007 0.9264 ± 0.0008 0.9169 ± 0.0006 0.944 0.926 ± 0.007 0.9619 ± 0.0006
DNC 0.766 ± 0.003 0.929 ± 0.002 0.730 ± 0.001 0.8566 ± 0.0003 0.913 ± 0.001 0.919 0.890 ± 0.006 0.939 ± 0.002
Wiki 0.68 ± 0.02 0.70 ± 0.02 0.63 ± 0.01 0.63 ± 0.02 0.83 ± 0.01 0.801 0.73 ± 0.01 0.76 ± 0.02
UCS 0.754 ± 0.005 0.8762 ± 0.0008 0.717 ± 0.003 0.8558 ± 0.0008 0.844 ± 0.002 0.850 0.904 ± 0.005 0.9530 ± 0.0008
Blg 0.784 ± 0.001 0.9312 ± 0.0001 0.767 ± 0.002 0.9321 ± 0.0003 0.9334 ± 0.0001 0.924 0.824 ± 0.001 0.9463 ± 0.0001
Ctl 0.56 ± 0.03 0.66 ± 0.02 0.57 ± 0.03 0.67 ± 0.02 0.70 ± 0.03 0.574 0.56 ± 0.03 0.66 ± 0.02
FAA 0.576 ± 0.003 0.589 ± 0.002 0.543 ± 0.007 0.535 ± 0.004 0.607 ± 0.003 0.779 0.592 ± 0.002 0.595 ± 0.002
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