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Rare events statistics of random walks on networks: localization
and other dynamical phase transitions
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associée à l’UPMC Université Paris 06, 24 Rue Lhomond, 75231 Paris Cedex 05, France.
3Department of Mathematics, King’s College London

Rare event statistics for random walks on complex networks are investigated using the large deviations for-
malism. Within this formalism, rare events are realized as typical events in a suitably deformed path-ensemble,
and their statistics can be studied in terms of spectral properties of a deformed Markov transition matrix. We
observe two different types of phase transition in such systems: (i) rare events which are singled out for suffi-
ciently large values of the deformation parameter may correspond tolocalizedmodes of the deformed transition
matrix; (ii) “mode-switching transitions” may occur as thedeformation parameter is varied. Details depend on
the nature of the observable for which the rare event statistics is studied, as well as on the underlying graph
ensemble. In the present letter we report on the statistics of the average degree of the nodes visited along a
random walk trajectory in Erdős-Rényi networks. Large deviations rate functions and localization properties are
studied numerically. For observables of the type considered here, we also derive an analytical approximation
for the Legendre transform of the large-deviations rate function, which is valid in the large connectivity limit. It
is found to agree well with simulations.

Random walks are dynamical processes widely used to an-
alyze, organize or perform important tasks on networks such
as searches [1, 2], routing or data transport [3–5]. Their pop-
ularity is due to their cheap implementation, as they rely only
on local information, such as the state of the neighborhood
of a given node of the network. This ensures network scala-
bility and allows fast data transmission without the need for
large storage facilities at nodes, such as big routing tables in
communication networks. These features make random walks
an efficient tool to explore networks characterized by a high
cost of information. Examples are sensor networks [6] where
many signaling packets are needed to acquire wider networks
status information. In peer-to-peer networks the absence of a
central server storing file locations requires users to perform
repeated local searches in order to find a file to download, and
various random walk strategies have been proposed as a scal-
able method [7–9] in this context. Less attention has been paid
to characterize rare events associated with random walks on
networks. Yet the occurrence of a rare event can have severe
consequences. In hide-and-seek games for instance [10], rare
events represent situations where the seeker finds either most
(or unusually many) of the hidden targets, or conversely none
(or unusually few). In the context of cyber-security, where
one is concerned with worms and viruses performing ran-
dom walks through a network, a rare event would correspond
to a situation where unusually many sensible nodes are suc-
cessfully attacked and infected, which may have catastrophic
consequences for the integrity of an entire IT infrastructure.
Characterizing the statistics of rare events for random walks
in complex networks and its dependence on network topology
is thus a problem of considerable technological importance. A
variant of this problem was recently analyzed for biased ran-
dom walks in complex networks [11]. That paper addressed
rare fluctuations in single node occupancy for an ensemble
of independent (biased) walkers in the stationary state of the

system. By contrast, our interest here is in rare event statis-
tics of path averages, or equivalently of time integrated vari-
ables. Rare event statistics of this type has been looked at for
instance in the context of kinetically constrained models of
glassy relaxation [12]; relations to constrained ensembles of
trajectories were explored in [13] for Glauber dynamics in the
1d Ising chain. While these studies were primarily concerned
with the use of large deviations theory as a tool to explore dy-
namical phase transitions in homogeneous systems, our focus
here is on the interplay between rare event statistics and the
heterogeneity of the underlying system.

In the present Letter we use large deviations theory to study
rare events statistics for path averages of observables asso-
ciated with sites visited along trajectories of random walks.
Within this formalism, rare events are realized as typical
events in a suitably deformed path-ensemble [12, 14]. Their
statistics can be studied in terms of spectral properties ofa de-
formed version of the Markov transition matrix for the orig-
inal random walk model, the relevant information being ex-
tracted from the algebraically largest eigenvalue of the de-
formed transition matrix. Such deformation may direct ran-
dom walks to subsets of a network with vertices of either
atypically high or atypically low coordination. It also ampli-
fies the heterogeneity of transition matrix elements for large
values of the deformation parameter and we observe that, as
a consequence, the eigenvector corresponding to the largest
eigenvalue of the deformed transition matrix may exhibit alo-
calization transition, indicating that rare large fluctuations of
path averages are typically realized by trajectories that remain
localized on small subsets of the network. Within localized
phases, we also encounter a second type of dynamical phase
transition related toswitching between modesas the defor-
mation parameter used to select rare events is varied. Our
methods allow us to study the role that network topology and
heterogeneity play in selecting these special paths, as well as
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to infer properties of paths actually selected to realize extreme
events.

The model. We consider a complex network with adja-
cency matrixA, with entriesai j = 1 if the edge (i j ) exists,
ai j = 0 otherwise. The transition matrixW of an unbiased
random walk has entriesWi j = ai j/k j wherek j is the degree
of node j andWi j is the probability of a transition fromj to i.

Writing iℓ = (i0, i1, · · · , iℓ) a path of lengthℓ, quantities of
interest are empirical path-averages of the form

φ̂ℓ =
1
ℓ

ℓ
∑

t=1

ξit , (1)

where theξi are quenched random variables associated with
the verticesi = 1, . . . ,N of the graph, which could be inde-
pendent of, be correlated with, or be deterministic functions
of the degreeski of the vertices. It is expected that theφ̂ℓ are
for largeℓ sharply peaked about their mean

φ̄ℓ =
1
ℓ

∑

iℓ

P(iℓ)
ℓ

∑

t=1

ξit =

〈

1
ℓ

ℓ
∑

t=1

ξit

〉

(2)

whereP(il) denotes the probability of the pathil .
The average (2) can be obtained from thecumulant generat-

ing functionψℓ(s) = ℓ−1 ln
∑

iℓ P(iℓ) es
∑ℓ

t=1 ξit asφ̄ℓ = ψ′ℓ(s)|s=0.
Here, we are interested in rare events, for which the empiri-
cal averageŝφℓ take valuesφ which differ significantly from
their meanφ̄ℓ. Large deviations theory predicts that forℓ ≫ 1
the probability densityP(φ) for such an event scales exponen-
tially with path-lengthℓ, P(φ) ∼ e−ℓI (φ), with a rate function
I (φ) which, according to the Gärtner-Ellis theorem [14] is ob-
tained as a Legendre transformI (φ) = sups{sφ − ψ(s)} of the
limiting cumulant generating functionψ(s) = limℓ→∞ ψℓ(s),
provided that this limit exists and that it is differentiable. We
shall see that the second condition may be violated, and that
the derivativeψ′(s) may develop discontinuities at certains-
values, entailing that we observe regions whereI (φ) is strictly
linear and only represents the convex hull of the true rate func-
tion [14].

In order to evaluateψℓ(s), we express path probabilities us-
ing the Markov transition matrixW and a distributionp0 =

(p0(i0)) of initial conditions asP(iℓ) =
[∏ℓ

t=1 Wit it−1

]

p(i0),
entailing thatψℓ(s) can be evaluated in terms of a de-
formed transition matrixW(s) =

(

esξi Wi j
)

as ψℓ(s) =
ℓ−1 ln

∑

iℓ ,i0[W
ℓ(s)] iℓ i0 p(i0). Using a spectral decomposition of

the deformed transition matrix one can write this as

ψℓ(s) = ln λ1+
1
ℓ

ln

[

(1, v1
)(

w1, p0
)

+
∑

α(,1)

(

λα

λ1

)ℓ

(1, vα
)(

wα, p0
)

]

.

(3)
Here theλα are eigenvalues ofW(s), the vα andwα are the
corresponding right and left eigenvectors,1 = (1, . . . , 1), and
the bracket notation (·, ·) is used to denote an inner prod-
uct. Eigenvalues are taken to be sorted in decreasing order
λ1 ≥ |λ2| ≥ |λ3| · · · ≥ λN, with the first inequality being a

consequence of the Perron-Frobenius theorem [15]. This con-
cludes the general framework. For the remainder of this Let-
ter, we will restrict our attention to the case whereξi = f (ki).

For long paths, the value of the cumulant generating func-
tion is dominated by the leading eigenvalueλ1 = λ1(s) of the
transition matrixW(s), soψ(s) = logλ1(s). In thes = 0 case,
the eigenvalue problem is trivial, as the column-stochasticity
of the transition matrix yields a left eigenvectorwi ≡ 1 corre-
sponding to the maximal eigenvalueλ1 = 1. The associated
right eigenvector isvi ∝ ki . For nonzeros, such closed form
expressions are in general not known. Performing a direct
matrix diagonalization is quite daunting for large system sizes
N, even if one exploits methods that calculates only the first
eigenvalue [16]. Hence we are interested in fast viable approx-
imations. Here we describe one such approximation expected
to be valid for networks in which vertex degrees are typically
large.

Degree-based approximation.We start by considering the
left eigenvectorsw instead of the right eigenvectors, for which
the eigenvalue equation can be written as

λw j =
1
k j

∑

i∈∂ j

wi es f(ki ) . (4)

This system of equations can be simplified by considering
a degree-based approximation for the first eigenvector, where
one assumes that the values ofwi only depend on the degree
of the nodei: wi = w(ki). If the average degree is large enough
and the degree distribution is not too heterogeneous, we can
write the eigenvalue equation (4) by appeal to the law of large
numbers as

λ1(s) w(k) =
∑

k′
P(k′|k) w(k′) es f(k′) (5)

whereP(k′|k) is the probability for the neighbor of a node of
degreek to have degreek′.

In an Erdős-Rényi (ER) ensemble [17], and more gener-
ally in any configuration model ensemble, we haveP(k′|k) =
P(k′) k′

〈k〉 . In this case the right-hand side of (5) does not depend
on k and thew(k) are in factk-independent. The eigenvalue
equation then simplifies to

λ1(s) =

〈

k
〈k〉

es f(k)

〉

, (6)

where the average is over the degree distributionP(k). This
approximation yields excellent results for large mean connec-
tivities c = 〈k〉 on ER graphs, and more generally for configu-
ration models without low degree nodes. This is illustratedin
figure 1, where we plot a comparison with numerical simula-
tions for ER graphs withc = 30. In figure 1 and throughout
the remainder of the paper simulation results are obtained as
averages over 1000 samples.

Eigenvector localization. Because of the heterogeneity of
the underlying system, one finds the random walk transition
matrix to exhibit localized states, both for fast and slow relax-
ation modes [18], even in the undeformed system, although
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FIG. 1. (Colour online) Cumulant generating functionψ(s) for ER
networks withc = 30 and f (ki) = ki/c, comparing the large-degree
approximation (6) (blue line) with results of a numerical simulation
(green line). The inset shows the corresponding rate functions.

the eigenvector corresponding to the largest eigenvalue (the
equilibrium distribution) is typically delocalized. However,
given the nature of the deformed transition matrix, one expects
the deformed random walk for large|s| to be localized around
vertices wheres f(ki) is very large; hence we anticipate that in
the deformed system, even the eigenvector corresponding to
the largest eigenvaluemaybecome localized for sufficiently
large |s|. In order to investigate this effect quantitatively we
look at the inverse participation ratio of the eigenvector corre-
sponding to the largest eigenvalueλ1 of W(s). Denoting byvi

its i-th component, we have

IPR[v] =

∑

i v4
i

[

∑

i v2
i

]2
(7)

One expects IPR[v] ∼ N−1 for a delocalized vector, whereas
IPR[v] = O(1) if v is localized.

Results on random graphs.We performed numerical sim-
ulations to evaluateλ1(s) and the IPR[v1(s)] for several types
of network, defined by their random graph topology. In the
present letter we restrict ourselves to discussing resultsfor
ER networks. We found that other network ensembles such
as scale-free random graphs give qualitatively similar results;
we will report on these in an extended version of this letter.

We looked at various examples for the functionf (ki) but
in the present letter we only report results for the normal-
ized degreef (ki) = ki/c; other deterministic types of degree-
dependent functions exhibit similar behavior, thus focusing
on the normalized degree is sufficient to capture the impor-
tant aspects of this problem. We restrict our simulations tothe
largest (giant) component of the graphs, in order to prevent
spurious effects of isolated nodes or small disconnected clus-
ters (e.g. dimers) dominatingλ1(s) and the IPR for negatives,
as these would represent trivial instances of rare events, where
a walker starts, and is thus stuck on a small disconnected com-
ponent of the graph. From here on, the network size given

must be understood as the size of the networks from which
the giant component is extracted.

Fig. 2 shows the existence of two localized regimes for suf-
ficiently large values of|s|, with IPRs on the localized side of
both transitions increasing with system size. Results can be
understood, as for large|s| the deformed random walk is nat-
urally attracted to the nodes with the largest (resp. smallest)
degrees for positive (resp. negative)s. Thus for large nega-
tive s the deformed walk tends to be concentrated at the end
of the longest dangling chain, whereas for large positives it
will be concentrated at the site with the largest available co-
ordination. On an ER network where the large-degree tail of
the degree distribution decays very fast, such a high degree
vertex is likely to be connected to vertices whose degrees are
lower, even significantly lower, than that of the highest degree
vertex in the network, which leads to IPRs approaching 1 in
the largeN limit. Conversely, for negatives, the deformed
random walk will be attracted to the ends of dangling chains
in the network, with the probability of escape from a chain
decreasing with its length (with the length of the longest dan-
gling chain increasing with system size). This can explain
that IPRs initially saturate at 1/2 for large systems. Only upon
further decreasings to more negative values will the asym-
metry of the deformed transition matrices, to and away from
the end of a dangling chain, induce that further weight of the
dominant eigenvector to become concentrated on the end-site,
leading to a further increase of the IPR.
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FIG. 2. IPR[v] as a function of the deformation parameters for ER
graphs withc = 6, and f (ki) = ki/c. The inset exhibits theN−1-
scaling of IPRs for 4 different values of the deformation parameters,
chosen in pairs on either side oftwo localization transitions, one at
negative, and one at positives.

From the values ofλ1(s) we also derived the large devia-
tion rate functions for path averages of the normalized degree
f (ki) = ki/c, for various systems sizes and average connec-
tivities. In fig. 3 we reportI (φ) for an ER network at a low
connectivity ofc = 3. While the right branch ofI (φ) is for
large N well approximated by a parabola, our results show
the emergence of a linear region on the left branch, which
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becomes more pronounced as the system size is increased.
This is a signature of a non-differentiable point ofψ(s) at
a point s∗ estimated to be ats∗ = −0.060± 0.002: at this
point the Gärtner-Ellis theorem cannot be used to evaluatethe
rate function, and the linear branch only represents the con-
vex envelope of the trueI (φ) [14]. The latter can either coin-
cide with its convex envelope, or it can indeed be non-convex.
However this information cannot be accessed by the theorem.
The emergence of a jump-discontinuity inψ′(s) is due to a
level crossing of the two largest eigenvalues, where the system
switches between two modes that correspond to the largest
eigenvalue on either side ofs∗. In finite systems the crossing
is an ‘avoided crossing’ due to level repulsion, but the two
largest eigenvalues become asymptotically degenerate ats∗ in
the N → ∞ limit, leading to a divergence of the correlation
lengthξ(s) = [ln(λ1(s)/λ2(s)]−1 at s∗, in close analogy with
phenomenology of second order phase transitions, the diver-
gence being logarithmic inN in the present case.
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FIG. 3. Rate functionI (φ) for ER graphs withc = 3, andf (ki) = ki/c
for system sizes ranging fromN = 100 toN = 6400. In the inset,
we showψ(s) in the vicinity of the non-differentiable point. For the
largest system size, a linear fit of the convex envelope of theleft
branch and a quadratic fit of the right branch ofI (φ) are shown as
well.

Conclusions and future perspectives.In this Letter we
have analyzed rare events statistics for path averages of ob-
servables associated with sites visited along random walk tra-
jectories on complex networks. Results are obtained by look-
ing at spectral properties of suitably deformed transitionma-
trices. The main outcome of our analysis is the possible emer-
gence of two types of dynamical phase transitions in low mean
degree systems: localization transitions which entail that large
deviations from typical values of path averages may be real-
ized by localized modes of a deformed transition matrix, and
mode-switching transitionssignifying that the modes (eigen-
vectors) in terms of which large deviations are typically real-
ized may switch as the deformation parameters and thus the
actual scale of large deviations are varied. Results of numer-
ical simulations consistently support these claims. We also
developed an analytical approximation valid for networks in

which degrees are typically large.
Our work opens up the perspective to study a broad range of

further interesting problems. On a technical level, one would
want to implement more powerful techniques, such as derived
in [19], to obtain the largest eigenvalue in the present problem
class for larger system sizes. Then there is clearly the need
to systematically study the dependence of the phenomena re-
ported here on the degree statistics, and on the nature of the
observables for which path averages are looked at. We have
gone some way in this direction and will report results in an
extended version of the present paper. In particular one might
wish to look at observables which, rather then being determin-
istic functions of the degree, are only statistically correlated
with the degree, or at observables taking values onedges be-
tweennodes [13, 14]. This could be of interest in applications
such as traffic or information flows on networks subject to ca-
pacity constraints on edges. Moreover, given the nature of the
mode-switching transition observed in the present letter,it is
clearly conceivable thatseveral such transitionscould be ob-
served in a single system, depending of course on the nature
of the observables studied and on the topological properties of
the underlying networks. Finally, critical phenomena associ-
ated with the localization transition and with mode-switching
transitions also deserve further study. We believe that this list
could go on.
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[5] B. Tadić and S. Thurner. Information super-diffusion on struc-
tured networks.Physica A: Stat. Mech. and its App., 332:566–
584, 2004.

[6] H. Tian, H. Shen, and T. Matsuzawa. Randomwalk routing for
wireless sensor networks. InParallel and Distributed Comput-
ing, Applications and Technologies, 2005. PDCAT 2005. Sixth
International Conference on, pages 196–200. IEEE, 2005.

[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
Proceedings of the 2003 conference on Applications, technolo-
gies, architectures, and protocols for computer communica-
tions, pages 407–418. ACM, 2003.

[8] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. InProceed-



5

ings of the 16th international conference on Supercomputing,
pages 84–95. ACM, 2002.

[9] N. Bisnik and A. Abouzeid. Modeling and analysis of random
walk search algorithms in p2p networks. InHot topics in peer-
to-peer systems, 2005. HOT-P2P 2005. Second International
Workshop on, pages 95–103. IEEE, 2005.

[10] K. Sneppen, A. Trusina, and M. Rosvall. Hide-and-seek on
complex networks.Europhys. Lett., 69(5):853, 2005.

[11] V. Kishore, M. S. Santhanam, and R. E. Amritkar. Extreme
events and event size fluctuations in biased random walks on
networks.Phys. Rev. E, 85:056120, 2012.

[12] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Dui-
jvendijk, and F. van Wijland. First-order dynamical phase tran-
sition in models of glasses: an approach based on ensembles of
histories.J. Phys. A, 42:075007, 2009.

[13] R. L. Jack and P. Sollich. Large deviations and ensembles of

trajectories in stochastic models.Progr. of Theor. Phys. Supple-
ment, 184:304–317, 2010.

[14] H. Touchette. The large deviation approach to statistical me-
chanics.Phys. Rep., 478(1):1–69, 2009.

[15] F. R. Gantmacher.Applications of the Theory of Matrices. In-
terscience, New York, 1959.

[16] Cornelius C. Lanczos.An iteration method for the solution of
the eigenvalue problem of linear differential and integral oper-
ators. United States Governm. Press Office, 1950.
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