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Rare event statistics for random walks on complex networ&sravestigated using the large deviations for-
malism. Within this formalism, rare events are realizedypgctl events in a suitably deformed path-ensemble,
and their statistics can be studied in terms of spectralgrtigs of a deformed Markov transition matrix. We
observe two dferent types of phase transition in such systems: (i) raretewehich are singled out for i+
ciently large values of the deformation parameter may epwad tdocalizedmodes of the deformed transition
matrix; (ii) “mode-switching transitions” may occur as ttieformation parameter is varied. Details depend on
the nature of the observable for which the rare event stis studied, as well as on the underlying graph
ensemble. In the present letter we report on the statistitiseoaverage degree of the nodes visited along a
random walk trajectory in Erdés-Rényi networks. Largeidions rate functions and localization properties are
studied numerically. For observables of the type consilaere, we also derive an analytical approximation
for the Legendre transform of the large-deviations ratetion, which is valid in the large connectivity limit. It
is found to agree well with simulations.

Random walks are dynamical processes widely used to arsystem. By contrast, our interest here is in rare eventsstati
alyze, organize or perform important tasks on networks suctics of path averagesor equivalently of time integrated vari-
as searchesl|[1, 2], routing or data transport/[3-5]. Thagir po ables. Rare event statistics of this type has been lookext at f
ularity is due to their cheap implementation, as they relyon instance in the context of kinetically constrained modédls o
on local information, such as the state of the neighborhoodlassy relaxation [12]; relations to constrained ensembfe
of a given node of the network. This ensures network scalatrajectories were explored in [[13] for Glauber dynamicdia t
bility and allows fast data transmission without the need fo 1d Ising chain. While these studies were primarily concérne
large storage facilities at nodes, such as big routing salble  with the use of large deviations theory as a tool to explore dy
communication networks. These features make random walksamical phase transitions in homogeneous systems, ouws focu
an dficient tool to explore networks characterized by a highhere is on the interplay between rare event statistics amd th
cost of information. Examples are sensor netwarks [6] wherdeterogeneity of the underlying system.

many signaling packets are needed to acquire wider networks _
y 89 ap . In the present Letter we use large deviations theory to study

status information. In peer-to-peer networks the absehae o ts statistics f h £ ob bl
central server storing file locations requires users togoerf rare events statistics for path averages ot observables ass

repeated local searches in order to find a file to download, angated with sites visited along trajectories of random walk

various random walk strategies have been proposed as a sc fithin Fhis formalism, rare events are realized as typica!
able method [7-9] in this context. Less attention has beih pa events in a suitably deformed path-ensemble [12, 14). Their

to characterize rare events associated with random walks O?atIStICS can be studied in terms of spectral propertiasies

networks. Yet the occurrence of a rare event can have seve %rmed version of the Markov transition matrix for the orig-
Inal random walk model, the relevant information being ex-

consequences. In hide-and-seek games for instance [i€], ra ted f the algebraically | t ei | f the d

events represent situations where the seeker finds eith&r m rac ed rom the aige .ralcsa yh r:;rgfes clgenva uedq e de

(or unusually many) of the hidden targets, or converselyenon ormed transition matrix. such de orm:?mon may Irect ran-
dom walks to subsets of a network with vertices of either

(or unusually few). In the context of cyber-security, where _ . . S .
one is concerned with worms and viruses performing rangtypmally high or atypically low coordination. It also affip

dom walks through a network, a rare event would corresponaes the heterogeneity f)f transition matrix elements fogdar
to a situation where unusually many sensible nodes are sualues of the deformation parameter and we observe that, as

cessfully attacked and infected, which may have catasitoph a consequence, the eigenvector_ porrequnding to the. targes
consequences for the integrity of an entire IT infrastreestu elg_env_alue of th.FT‘ de_forl_”neq transition matrix may exh_lﬂxli—a
Characterizing the statistics of rare events for randonksval calization transition indicating that rare large fluctuations of

in complex networks and its dependence on network topolog ath averages are typically realized by trajectories taiain

is thus a problem of considerable technological importaAce or?allzed on slmall subsetts of the nedtvtvork. }/\gthm challlz?]d
variant of this problem was recently analyzed for biased ranP1aS€S, WE also encounter a second type of dynamical phase

dom walks in complex networks [11]. That paper addresse(tjr"JlnSition related tawitching between modes the defor-

rare fluctuations in single node occupancy for an ensempdhation parameter used to select rare events is varied. Our

of independent (biased) walkers in the stationary statbef t methods all_ow us tq study tr_'e role that netyvork topology and
heterogeneity play in selecting these special paths, dsawel
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to infer properties of paths actually selected to realizeeeme  consequence of the Perron-Frobenius theoreim [15]. This con

events. cludes the general framework. For the remainder of this Let-
The model. We consider a complex network with adja- ter, we will restrict our attention to the case whére f (k).
cency matrixA, with entriesa;; = 1 if the edge ij) exists, For long paths, the value of the cumulant generating func-

a; = 0 otherwise. The transition matrW of an unbiased tion is dominated by the leading eigenvalue= 1;(s) of the
random walk has entriesf; = a;j/k; wherek; is the degree transition matriX\W(s), soy(s) = log1(s). Inthes = 0 case,

of nodej andW; is the probability of a transition fromto i. the eigenvalue problem is trivial, as the column-stochagti
Writing i, = (io, i1, --- ,i¢) @ path of lengttt, quantities of ~ of the transition matrix yields a left eigenvectar= 1 corre-
interest are empirical path-averages of the form sponding to the maximal eigenvalug = 1. The associated

right eigenvector is; o k. For nonzercs, such closed form

1Y expressions are in general not known. Performing a direct
¢ = 7 Z &ic s (1) matrix diagonalization is quite daunting for large systéres
t=1 N, even if one exploits methods that calculates only the first

where thet are quenched random variables associated witff!9€nvalu€[16]. Hence we are interested in fast viableappr
the vertices = 1,...,N of the graph, which could be inde- imations. Here we describe one such approximation expected

pendent of, be correlated with, or be deterministic funtio to be valid for networks in which vertex degrees are typicall

of the degreek; of the vertices. It is expected that tﬁgare large. . . o
for large¢ sharply peaked about their mean De_gree—based a_lpproxmatlon.We ste_lrt by considering the
left eigenvectorsy instead of the right eigenvectors, for which

_ 1 ¢ 1< the eigenvalue equation can be written as
or=7 Pl ) & = <; Ze:it> 2) 1
ic t=1 1 Aw; = c Z w; esk) (4)

t=
. . . 1 ieoj
whereP(i|) denotes the probability of the paih

The averagd{2) can be obtained fromt¢henulantgenerat-  This system of equations can be simplified by considering
ing functiony(s) = ¢-1In i, Plic) eSZi as¢; = ) (9ls=0- a degree-based approximation for the first eigenvectorrevhe
Here, we are interested in rare events, for which the empirione assumes that the valuesipfonly depend on the degree
cal averages, take valuess which differ significantly from  Of the node: w = w(k). Ifthe average degree is large enough
their meany,. Large deviations theory predicts that fos> 1 anq the dggree distributior_w is not too heterogeneous, we can
the probability density(#) for such an event scales exponen- Write the eigenvalue equatidn (4) by appeal to the law ofdarg
tially with path-length¢, P(¢) ~ e'@ | with arate function ~Nnumbers as
I (¢) which, according to the Gartner-Ellis theoremi[14] is ob-
tained as a Legendre transfohifp) = sup{sp — ¢(s)} of the
limiting cumulant generating functiop(s) = lim,_« ¢.(9),
provided that this limit exists and that it isftirentiable. We whereP(k'[K) is the probability for the neighbor of a node of
shall see that the second condition may be violated, and thalegreek to have degrek'.
the derivativey’(s) may develop discontinuities at certasn In an Erd6s-Rényi (ER) ensemble [17], and more gener-
values, entailing that we observe regions whégg is strictly  ally in any configuration model ensemble, we h&(&'|k) =
linear and only represents the convex hull of the true ratefu  P(K’ (kT In this case the right-hand side pf (5) does not depend
tion [14]. on k and thew(k) are in factk-independent. The eigenvalue

In order to evaluates,(s), we express path probabilities us- equation then simplifies to
ing the Markov transition matrixV and a distributiorpy = K
(polio)) of initial conditions asP(is) = |1 W] p(io) (9 = <—esf<k>> , ©)
entailing thaty,(s) can be evaluated in terms of a de- LY
formed transition matrixW(s) = (e¥'W) as y«(S) =  where the average is over the degree distribuB¢k). This
710 X, i [W(9)]iio Plio). Using a spectral decomposition of approximation yields excellent results for large mean ean
the deformed transition matrix one can write this as tivities ¢ = (k) on ER graphs, and more generally for configu-

¢ ration models without low degree nodes. This is illustrated

(9 = In ,11+} In [(1, V1)(W1, Po)+ Z (ﬁ) (1, Va)(Wq, Do)] _ figure[, where we plot a comparison with numerical simula-

4 oG \ 11 tions for ER graphs witlt = 30. In figure[l and throughout

(3) the remainder of the paper simulation results are obtaised a

Here thel, are eigenvalues ol(s), thev, andw, are the averages over 1000 samples.
corresponding right and left eigenvectotss (4,...,1), and Eigenvector localization. Because of the heterogeneity of
the bracket notation-,() is used to denote an inner prod- the underlying system, one finds the random walk transition
uct. Eigenvalues are taken to be sorted in decreasing ordematrix to exhibit localized states, both for fast and slolaxe
A1 > |2 = |A3]--- = AN, with the first inequality being a ation modes/[18], even in the undeformed system, although

(W) = > PKIK) w(k) e (5)
k/
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15 : : : must be understood as the size of the networks from which
ST T ] the giant component is extracted.
10} Wi L i Fig.[2 shows the existence of two localized regimes for suf-
—:@ F 1 ficiently large values ofg, with IPRs on the localized side of
5| Q‘vz I 1 both transitions increasing with system size. Results @n b
> :l understood, as for lardg the deformed random walk is nat-

7060 080 100 120 140
[0}

urally attracted to the nodes with the largest (resp. smsille

0 degrees for positive (resp. negatiw)Thus for large nega-
tive s the deformed walk tends to be concentrated at the end
S _ 1 of the longest dangling chain, whereas for large posisite
o eal — will be concentrated at the site with the largest availaile ¢
'10_10 5 0 5 10 ordination. On an ER network where the large-degree tail of
s the degree distribution decays very fast, such a high degree

vertex is likely to be connected to vertices whose degrees ar
FIG. 1. (Colour online) Cumulant generating functip(s) for ER  lower, even significantly lower, than that of the highestreeg
networks withc = 30 andf(k) = k;/c, comparing the large-degree Vvertex in the network, which leads to IPRs approaching 1 in
approximation[(b) (blue line) with results of a numericahsiation  the largeN limit. Conversely, for negative, the deformed
(green line). The inset shows the corresponding rate fomsti random walk will be attracted to the ends of dangling chains

in the network, with the probability of escape from a chain

decreasing with its length (with the length of the longest-da
the eigenvector corresponding to the largest eigenvahee (t 9ling chain increasing with system size). This can explain
equilibrium distribution) is typically delocalized. Hower, ~thatIPRs initially saturate aya for large systems. Only upon
given the nature of the deformed transition matrix, one etgpe further decreasing to more negative values will the asym-
the deformed random walk for large to be localized around Metry of the deformed transition matrices, to and away from
vertices where f(k) is very large; hence we anticipate that in the end of a dangling chain, induce that further weight of the
the deformed system, even the eigenvector corresponding f°Minant eigenvector to become concentrated on the ead-sit
the largest eigenvalumay become localized for sficiently ~ !€ading to a further increase of the IPR.
large|d. In order to investigate thisfiect quantitatively we

look at the inverse participation ratio of the eigenvectore- 0.9
sponding to the largest eigenvaligof W(s). Denoting by 0.8 |
its i-th component, we have 07|
v 0.6
IPR[v] = 21V > (7 =
[Zi VZ] D: 0.5+
' L g4t
One expects IPR] ~ N~ for a delocalized vector, whereas 03 I

IPR[V] = O(1) if v is localized. 02 |
Results on random graphsWe performed numerical sim- '
ulations to evaluate;(s) and the IPRy;(s)] for several types 0.1 ¢
of network, defined by their random graph topology. In the 0

present letter we restrict ourselves to discussing resoits
ER networks. We found that other network ensembles such
as scale-free random graphs give qualitatively similaunltes
we will report on these in an extended version of this letter. i 2. |pR[v] as a function of the deformation parametéor ER

We looked at various examples for the functibgk) but  graphs withc = 6, andf(k) = k/c. The inset exhibits thé\-1-
in the present letter we only report results for the normal-scaling of IPRs for 4 dferent values of the deformation parameter
ized degred (k) = ki/c; other deterministic types of degree- chosen in pairs on either side ©fo localization transitions, one at
dependent functions exhibit similar behavior, thus foogsi Nnegative, and one at positiee
on the normalized degree isfBaient to capture the impor-
tant aspects of this problem. We restrict our simulatiorte¢o From the values ofi;(s) we also derived the large devia-
largest (giant) component of the graphs, in order to prevertion rate functions for path averages of the normalizedelegr
spurious fects of isolated nodes or small disconnected clus{f (k) = k;j/c, for various systems sizes and average connec-
ters (e.g. dimers) dominating(s) and the IPR for negativg tivities. In fig. [3 we report (¢) for an ER network at a low
as these would represent trivial instances of rare evelhisrav  connectivity ofc = 3. While the right branch of(¢) is for
a walker starts, and is thus stuck on a small disconnected confarge N well approximated by a parabola, our results show
ponent of the graph. From here on, the network size givethe emergence of a linear region on the left branch, which




becomes more pronounced as the system size is increasechich degrees are typically large.

This is a signature of a nonftérentiable point ofy(s) at Our work opens up the perspective to study a broad range of
a points* estimated to be at* = —0.060+ 0.002: at this further interesting problems. On a technical level, oneldou
point the Gartner-Ellis theorem cannot be used to evalhhate want to implement more powerful techniques, such as derived
rate function, and the linear branch only represents the corin [12], to obtain the largest eigenvalue in the present larmb

vex envelope of the trug¢) [14]. The latter can either coin- class for larger system sizes. Then there is clearly the need
cide with its convex envelope, or it can indeed be non-convexto systematically study the dependence of the phenomena re-
However this information cannot be accessed by the theorenported here on the degree statistics, and on the nature of the
The emergence of a jump-discontinuity yii(s) is due to a  observables for which path averages are looked at. We have
level crossing of the two largest eigenvalues, where thiesys gone some way in this direction and will report results in an
switches between two modes that correspond to the largeektended version of the present paper. In particular onétmig
eigenvalue on either side &f. In finite systems the crossing wish to look at observables which, rather then being determi

is an ‘avoided crossing’ due to level repulsion, but the twoistic functions of the degree, are only statistically ctated

largest eigenvalues become asymptotically degeneraterat

with the degree, or at observables taking valuesadges be-

theN — oo limit, leading to a divergence of the correlation tweennodes|[13, 14]. This could be of interest in applications

length&(s) = [In(A1(9)/A2(9)] at s, in close analogy with

such as tréic or information flows on networks subject to ca-

phenomenology of second order phase transitions, the-divepacity constraints on edges. Moreover, given the naturieeof t

gence being logarithmic iN in the present case.

0.5
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FIG. 3. Rate function(¢) for ER graphs wittt = 3, andf (k) = k/c
for system sizes ranging frol = 100 toN = 6400. In the inset,
we showy(s) in the vicinity of the non-dierentiable point. For the
largest system size, a linear fit of the convex envelope ofiéfte
branch and a quadratic fit of the right branchl ¢f) are shown as
well.

Conclusions and future perspectivesn this Letter we

have analyzed rare events statistics for path averages-of ob

servables associated with sites visited along random walk t

jectories on complex networks. Results are obtained by-look

ing at spectral properties of suitably deformed transititax

trices. The main outcome of our analysis is the possible emer
gence of two types of dynamical phase transitions in low meang

degree systems: localization transitions which entatlltirge

deviations from typical values of path averages may be real-
ized by localized modes of a deformed transition matrix, and

mode-switching transitionsignifying that the modes (eigen-
vectors) in terms of which large deviations are typicallgl+e
ized may switch as the deformation parametand thus the

actual scale of large deviations are varied. Results of mume

mode-switching transition observed in the present leittés,
clearly conceivable thateveral such transitionsould be ob-
served in a single system, depending of course on the nature
of the observables studied and on the topological prosasfie
the underlying networks. Finally, critical phenomena asso
ated with the localization transition and with mode-swiitch
transitions also deserve further study. We believe thatlibti
could go on.
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